11 research outputs found
A Numerical Study of Coulomb Interaction Effects on 2D Hopping Transport
We have extended our supercomputer-enabled Monte Carlo simulations of hopping
transport in completely disordered 2D conductors to the case of substantial
electron-electron Coulomb interaction. Such interaction may not only suppress
the average value of hopping current, but also affect its fluctuations rather
substantially. In particular, the spectral density of current
fluctuations exhibits, at sufficiently low frequencies, a -like increase
which approximately follows the Hooge scaling, even at vanishing temperature.
At higher , there is a crossover to a broad range of frequencies in which
is nearly constant, hence allowing characterization of the current
noise by the effective Fano factor F\equiv S_I(f)/2e \left. For
sufficiently large conductor samples and low temperatures, the Fano factor is
suppressed below the Schottky value (F=1), scaling with the length of the
conductor as . The exponent is significantly
affected by the Coulomb interaction effects, changing from when such effects are negligible to virtually unity when they are
substantial. The scaling parameter , interpreted as the average
percolation cluster length along the electric field direction, scales as when Coulomb interaction effects are negligible
and when such effects are substantial, in
good agreement with estimates based on the theory of directed percolation.Comment: 19 pages, 7 figures. Fixed minor typos and updated reference
A Numerical Study of Transport and Shot Noise at 2D Hopping
We have used modern supercomputer facilities to carry out extensive Monte
Carlo simulations of 2D hopping (at negligible Coulomb interaction) in
conductors with the completely random distribution of localized sites in both
space and energy, within a broad range of the applied electric field and
temperature , both within and beyond the variable-range hopping region. The
calculated properties include not only dc current and statistics of localized
site occupation and hop lengths, but also the current fluctuation spectrum.
Within the calculation accuracy, the model does not exhibit noise, so
that the low-frequency noise at low temperatures may be characterized by the
Fano factor . For sufficiently large samples, scales with conductor
length as , where , and
parameter is interpreted as the average percolation cluster length. At
relatively low , the electric field dependence of parameter is
compatible with the law which follows from directed
percolation theory arguments.Comment: 17 pages, 8 figures; Fixed minor typos and updated reference
Optimization of filters for simulation of interfering radio reflections in the investigation of systems of echo-signal primary processing
The paper is devoted to a method for finding the pulse response coefficients of simulation filters. The filters are optimized for investigation of effectiveness of systems used for primary processing of radar signals and including a moving target indication unit. The paper discloses the method of construction of echo-signal model with regard for parameters of filters of moving target indication. Comparison between the suggested and known approaches to radio reflection simulation is performed