15 research outputs found

    The Electrochemical Performance and Applications of Several Popular Lithium-ion Batteries for Electric Vehicles - A Review

    Get PDF
    The Lithium-ion battery is one of the most common batteries used in Electric Vehicles (EVs) due to the specific features of high energy density, power density, long life span and environment friendly. With the development of lithium-ion battery technology, different materials have been adopted in the design of the cathodes and anodes in order to gain a better performance. LiMn2O4LiMn_{2}O_{4} , LiNiMnCoO2LiNiMnCoO_{2} , LiNiCoAlO2LiNiCoAlO_{2} , LiFePO4LiFePO_{4} and Li4Ti5O12Li_{4}Ti_{5}O_{12} are five common lithium-ion batteries adopted in commercial EVs nowadays. The characteristics of these five lithium-ion batteries are reviewed and compared in the aspects of electrochemical performance and their practical applications

    Nanocomposites: synthesis, structure, properties and new application opportunities

    Full text link

    Thermal diffusivity of metallic thin films: Au, Sn, Mo, and Al/Ti alloy

    No full text
    The thermal diffusivity of Au, Sn, Mo, and Al0.97Ti0.03 alloy thin films, which are commonly used in microelectromechanical (MEMs) system applications, is measured by two independent methods - the ac calorimetric and photothermal mirage methods. Both methods yield similar results of the thin-film thermal conductivity, but the uncertainty of the mirage technique is found to be relatively large because of the large temperature increase during the measurement. The measured thermal diffusivities of the thin films are generally lower than those of the same bulk material. Especially, the Al0.97Ti0.03 thin film shows a pronounced thermal conductivity drop compared with bulk Al, which is believed to be mainly due to impurity scattering. Comparison of the thermal conductivity with the electrical conductivity measured by the standard four-probe technique indicates that the relation of thermal and electrical conductivities follows the Wiedemann-Franz law for the case of Au and Sn thin films. However, the Lorentz number is significantly larger than the theoretical prediction for the case of Al0.97Ti0.03 and Mo thin films.X1110sciescopu

    Thermal conductivity of AlN and SiC thin films

    No full text
    The thermal conductivity of AlN and SiC thin films sputtered on silicon substrates is measured employing the 3 omega method. The thickness of the AlN sample is varied in the range from 200 to 2000 nm to analyze the size effect. The SiC thin films are prepared at two different temperatures, 20 and 500 degrees C, and the effect of deposition temperature on thermal conductivity is examined. The results reveal that the thermal conductivity of the thin films is significantly smaller than that of the same material in bulk form. The thermal conductivity of the AlN thin film is strongly dependent on the film thickness. For the case of SiC thin films, however, increased deposition temperature results in negligible change in the thermal conductivity as the temperature is below the critical temperature for crystallization. To explain the thermal conduction in the thin films, the thermal conductivity and microstructure are compared using x-ray diffraction patterns.X1144sciescopu

    Bubble dynamics induced by pulsed-laser evaporation of ink as a method to develop novel print heads

    No full text
    The bubble dynamics induced by direct laser heating is experimentally analyzed as a first step to assess the technical feasibility of laser-based ink jet technology. To understand the interaction between laser light and ink, the absorption spectrum is measured for various ink colors and concentrations. The hydrodynamics of laser-generated bubbles is examined by laser flash photography When an Ar ion laser pulse (wavelength 488 nm) with an output power up to 600 mW is incident on the ink solution through a transparent window a hemispherical bubble with a diameter up to similar to 100 mu m can be formed with a lifetime in the range similar to O(10 mu s) depending on the laser power and the focal-spot size. A parametric study has been performed to reveal the effect of laser pulse width, output power. ink concentration, and color on the bubble dynamics. The results show that the bubble generated by a laser pulse is largely similar to that produced by a thin film heater. Consequently, the present work demonstrates the feasibility of developing a laser-actuated droplet generation mechanism for applications in ink jet print heads. Furthermore. the results of this work indicate that the droplet generation frequency is likely to be further increased by optimizing the process parameters. (C) 2006 Society for Imaging Science and Technology.X111sciescopu

    Easy calibration method of vision system for in-situ measurement of strain of thin films

    No full text
    An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensing camera in the system is a central element part to measure displacement in the order of nanometer using images taken with the camera. This was accomplished by modeling the optical projection through the camera lens and relative locations between the object and camera in 3D space. A set of known 3D points on a plane where the film is located on is projected to an image plane as input data. These points, known as a calibration points, are then used to estimate the projection parameters of the camera. In the measurement system of the micro-scale by CCD camera, the calibration data acquisition and one-to-one matching steps between the image and 3D planes need precise data extraction procedures and repetitive user's operation to calibrate the measuring devices. The lack of the robust image feature extraction and easy matching prevent the practical use of these methods. A data selection method was proposed to overcome these limitations and offer an easy and convenient calibration of a vision system that has the CCD camera and the 3D reference plane with calibration marks of circular type on the surface of the plane. The method minimizes the user's intervention such as the fine tuning of illumination system and provides an efficient calibration method of the vision system for in-situ axial displacement measurement of the micro-tensile materials.X113sciescopu
    corecore