21 research outputs found
Bacterial Leaf Symbiosis in Angiosperms: Host Specificity without Co-Speciation
Bacterial leaf symbiosis is a unique and intimate interaction between bacteria and flowering plants, in which endosymbionts are organized in specialized leaf structures. Previously, bacterial leaf symbiosis has been described as a cyclic and obligate interaction in which the endosymbionts are vertically transmitted between plant generations and lack autonomous growth. Theoretically this allows for co-speciation between leaf nodulated plants and their endosymbionts. We sequenced the nodulated Burkholderia endosymbionts of 54 plant species from known leaf nodulated angiosperm genera, i.e. Ardisia, Pavetta, Psychotria and Sericanthe. Phylogenetic reconstruction of bacterial leaf symbionts and closely related free-living bacteria indicates the occurrence of multiple horizontal transfers of bacteria from the environment to leaf nodulated plant species. This rejects the hypothesis of a long co-speciation process between the bacterial endosymbionts and their host plants. Our results indicate a recent evolutionary process towards a stable and host specific interaction confirming the proposed maternal transmission mode of the endosymbionts through the seeds. Divergence estimates provide evidence for a relatively recent origin of bacterial leaf symbiosis, dating back to the Miocene (5–23 Mya). This geological epoch was characterized by cool and arid conditions, which may have triggered the origin of bacterial leaf symbiosis
Deep divergences in the coffee family and the systematic position of Acranthera
Despite extensive efforts, there are unresolved questions on evolutionary relationships in the angiosperm family Rubiaceae. Here, information from six loci and 149 Rubiaceae taxa provide new insights. Acranthera and Coptosapelta are strongly supported as sisters. Pollen grains of Acranthera possess several features common in Rubiaceae, but amongst potential similarities with the unusual grains of Coptosapelta are the nature of the apertures and the structure of the sexine. Luculia, Acranthera and Coptosapelta are excluded from the three subfamilies
Ixoroideae, Cinchonoideae and Rubioideae. Sipaneeae and
Condamineeae form a clade, sister to remaining Ixoroideae.
Rondeletieae and Guettardeae are sisters to remaining
Cinchonoideae. Colletoecema is sister to remaining Rubioideae, followed by the Urophylleae–Ophiorrhizeae clade. Nuclear ITS provided structured information at all phylogenetic levels, but the main gain from adding nrITS was the increased resolution. Average support values also increased but were generally high also without nrITS and the increase was not statistically significant
RIP mutated ITS genes in populations of Ophiocordyceps sinensis and their implications for molecular systematics
Different hypotheses have been proposed to interpret the observed unusual ITS (internal transcribed spacer) sequences in Ophiocordyceps sinensis. The coexistence of diverged ITS paralogs in a single genome was previously shown by amplifying the ITS region from mono-ascospore isolates using specific primers designed for different ITS paralog groups. Among those paralogs, are AT-biased ITS sequences which were hypothesized to result from repeat-induced point mutation (RIP). This is a process that detects and mutates repetitive DNA and frequently leads to epigenetic silencing, and these mutations have been interpreted as pseudogenes. Here we investigate the occurrence and frequency of ITS pseudogenes in populations of O. sinensis using large-scale sampling, and discusses the implications of ITS pseudogenes for fungal phylogenetic and evolutionary studies. Our results demonstrate a wide distribution of ITS pseudogenes amongst different geographic populations, and indicate how ITS pseudogenes can contribute to the reconstruction of the evolutionary history of the species