13 research outputs found

    Contribution of ULF Wave Activity to the Global Recovery of the Outer Radiation Belt During the Passage of a High-Speed Solar Wind Stream Observed in September 2014

    Get PDF
    Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how ultralow frequency (ULF) wave activity during the passage of Alfvénic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on 22 September 2014, which coincides with the corotating interaction region preceding a high-speed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground- and space-based observational data and global magnetohydrodynamic simulations and calculated the ULF wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower L-shells. Magnetohydrodynamic simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfvén modes in the magnetospheric nightside sector. The observations agree with the empirical model and are confirmed by phase space density calculations for this global recovery period

    On the relation between radiation belt electrons and solar wind parameters/geomagnetic indices: Dependence on the first adiabatic invariant and L

    No full text
    The relation between radiation belt electrons and solar wind/magnetospheric processes is of particular interest due to both scientific and practical needs. Though many studies have focused on this topic, electron data from Van Allen Probes with wide L shell coverage and fine energy resolution, for the first time, enabled this statistical study on the relation between radiation belt electrons and solar wind parameters/geomagnetic indices as a function of first adiabatic invariant μ and L*. Good correlations between electron phase space density (PSD) and solar wind speed, southward IMF Bz, SYM-H and AL indices are found over wide μ and L* ranges, with higher correlation coefficients and shorter time lags for low-μ electrons than high-μ electrons; the anti-correlation between electron PSD and solar wind proton density is limited to high-μ electrons at high L*. The solar wind dynamic pressure has dominantly positive correlation with low-μ electrons and negative correlation with high-μ electrons at different L*. In addition, electron PSD enhancements also correlate well with various solar wind/geomagnetic parameters, and for most parameters this correlation is even better than that of electron PSD while the time lag is also much shorter. Among all parameters investigated, AL index is shown to correlate the best with electron PSD enhancements, with correlation coefficients up to ~0.8 for low-μ electrons (time lag ~ 0 day) and ~0.7 for high-μ electrons (time lag ~ 1-2 days), suggesting the importance of seed and source populations provided by substorms in radiation belt electron PSD enhancements

    Variability of the pitch angle distribution of radiation belt ultrarelativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations

    No full text
    Fifteen months of pitch angle resolved Van Allen Probes Relativistic Electron-Proton Telescope (REPT) measurements of differential electron flux are analyzed to investigate the characteristic variability of the pitch angle distribution of radiation belt ultrarelativistic (>2MeV) electrons during storm conditions and during the long-term poststorm decay. By modeling the ultrarelativistic electron pitch angle distribution as sinnα, where α is the equatorial pitch angle, we examine the spatiotemporal variations of the n value. The results show that, in general, n values increase with the level of geomagnetic activity. In principle, ultrarelativistic electrons respond to geomagnetic storms by becoming more peaked at 90 pitch angle with n values of 2-3 as a supportive signature of chorus acceleration outside the plasmasphere. High n values also exist inside the plasmasphere, being localized adjacent to the plasmapause and exhibiting energy dependence, which suggests a significant contribution from electromagnetic ion cyclotron (EMIC) wave scattering. During quiet periods, n values generally evolve to become small, i.e., 0-1. The slow and long-term decays of the ultrarelativistic electrons after geomagnetic storms, while prominent, produce energy and L-shell-dependent decay time scales in association with the solar and geomagnetic activity and wave-particle interaction processes. At lower L shells inside the plasmasphere, the decay time scales τd for electrons at REPT energies are generally larger, varying from tens of days to hundreds of days, which can be mainly attributed to the combined effect of hiss-induced pitch angle scattering and inward radial diffusion. As L shell increases to L~3.5, a narrow region exists (with a width of ~0.5L), where the observed ultrarelativistic electrons decay fastest, possibly resulting from efficient EMIC wave scattering. As L shell continues to increase, τd generally becomes larger again, indicating an overall slower loss process by waves at high L shells. Our investigation based upon the sinnα function fitting and the estimate of decay time scale offers a convenient and useful means to evaluate the underlying physical processes that play a role in driving the acceleration and loss of ultrarelativistic electrons and to assess their relative contributions. Key Points Ultrarelativistic electron PADs vary dynamically during storms Ultrarelativistic electron fluxes show slow poststorm decays The analyses are useful to evaluate the underlying physic

    Enhancing Students` Speaking Skill through Task-Based Language Teaching (TBLT) at English Tadris Department of STAIN Kerinci

    Get PDF
    This paper reports a classroom action research which conducted in an EFL classroom. The problem of this study is that teaching and learning process tends to be monotonous due to the single method used by English teachers. The learners` speaking course is familiarized with English structures. It requires a communicative and constructive method such as TBLT. The purpose of this study is to describe the effectiveness of TBLT in enhancing students` speaking skill. 30 EFL learners at the seventh semester at STAIN Kerinci took a part in this study. The instruments used to collect the data were speaking test, observation, and field-note. The results of the study showed that there were 2 cycles needed to implement the method. The process of teaching and learning in the first cycle indicates that TBLT improved learners` speaking skill, though some problems were needed to be solved. Unlike the cycle I, the process in the cycle II was improved in term of learners` speaking score and their motivation to attend the course if compared with those in cycle I. So, it is concluded that TBLT is an appropriate method to improve learners` speaking skill
    corecore