695 research outputs found

    My Diabetes My Way:An Evolving National Data Driven Diabetes Self Management Platform

    Get PDF
    MyDiabetesMyWay (MDMW) is an award-wining national electronic personal health record and self-management platform for diabetes patients in Scotland. This platform links multiple national institutional and patient-recorded data sources to provide a unique resource for patient care and self-management. This review considers the current evidence for online interventions in diabetes and discusses these in the context of current and ongoing developments for MDMW. Evaluation of MDMW through patient reported outcomes demonstrates a positive impact on self-management. User feedback has highlighted barriers to uptake and has guided platform evolution from an education resource website to an electronic personal health record now encompassing remote monitoring, communication tools and personalized education links. Challenges in delivering digital interventions for long-term conditions include integration of data between institutional and personal recorded sources to perform big data analytics and facilitating technology use in those with disabilities, low digital literacy, low socioeconomic status and in minority groups. The potential for technology supported health improvement is great, but awareness and adoption by health workers and patients remains a significant barrier

    Impact of precursor-derived peracetic acid on post-weaning diarrhea , intestinal microbiota and predicted microbial functional genes in weaned pigs

    Get PDF
    Post-weaning diarrhea affects piglets in the nursery phase of production, leading to a substantial impact both at the farm and financial levels. The multifactorial etiology of this disease includes housing conditions, pig genetics, microbial composition, and metagenomic assets. Among the common therapeutic approaches, the widely used zinc oxide underwent a European Union ban in 2022 due to its negative environmental impact and correlation to increased antimicrobial resistance. During this study, we have tested two levels of inclusion of the potential antimicrobial alternative peracetic acid, delivered in water via the hydrolysis of the precursors sodium percarbonate and tetraacetylethylenediamine, in comparison to zinc oxide and an untreated control during a 2-week animal study. We assessed the microbial composition and predicted the metagenome, together with performance and physiological parameters, in order to describe the microbial functional role in etiopathology. Both zinc oxide and peracetic acid resulted in amelioration of the diarrheal status by the end of the trial period, with noticeable zinc oxide effects visible from the first week. This was accompanied by improved performance when compared to the first-week figures and a decreased stomach pH in both peracetic acid levels. A significant reduction in both stomach and caecal Proteobacteria was recorded in the zinc oxide group, and a significant reduction of Campylobacter in the stomach was reported for both zinc oxide and one of the peracetic acid concentrations. Among other functional differences, we found that the predicted ortholog for the zonula occludens toxin, a virulence factor present in pathogens like Escherichia coli and Campylobacter jejuni, was less abundant in the stomach of treated pigs compared to the control group. In water, peracetic acid delivered via precursor hydrolysis has the potential to be a valid intervention, an alternative to antimicrobial, to assist the weaning of piglets. Our findings support the view that post-weaning diarrhea is a complex multifactorial disease with an important metagenomic component characterized by the differential abundance of specific predicted orthologs and microbial genera in the stomach and caecum of pigs

    Impact of precursor-derived peracetic acid on post-weaning diarrhea , intestinal microbiota and predicted microbial functional genes in weaned pigs

    Get PDF
    Post-weaning diarrhea affects piglets in the nursery phase of production, leading to a substantial impact both at the farm and financial levels. The multifactorial etiology of this disease includes housing conditions, pig genetics, microbial composition, and metagenomic assets. Among the common therapeutic approaches, the widely used zinc oxide underwent a European Union ban in 2022 due to its negative environmental impact and correlation to increased antimicrobial resistance. During this study, we have tested two levels of inclusion of the potential antimicrobial alternative peracetic acid, delivered in water via the hydrolysis of the precursors sodium percarbonate and tetraacetylethylenediamine, in comparison to zinc oxide and an untreated control during a 2-week animal study. We assessed the microbial composition and predicted the metagenome, together with performance and physiological parameters, in order to describe the microbial functional role in etiopathology. Both zinc oxide and peracetic acid resulted in amelioration of the diarrheal status by the end of the trial period, with noticeable zinc oxide effects visible from the first week. This was accompanied by improved performance when compared to the first-week figures and a decreased stomach pH in both peracetic acid levels. A significant reduction in both stomach and caecal Proteobacteria was recorded in the zinc oxide group, and a significant reduction of Campylobacter in the stomach was reported for both zinc oxide and one of the peracetic acid concentrations. Among other functional differences, we found that the predicted ortholog for the zonula occludens toxin, a virulence factor present in pathogens like Escherichia coli and Campylobacter jejuni, was less abundant in the stomach of treated pigs compared to the control group. In water, peracetic acid delivered via precursor hydrolysis has the potential to be a valid intervention, an alternative to antimicrobial, to assist the weaning of piglets. Our findings support the view that post-weaning diarrhea is a complex multifactorial disease with an important metagenomic component characterized by the differential abundance of specific predicted orthologs and microbial genera in the stomach and caecum of pigs

    Precursor-derived in-water peracetic acid impacts on broiler performance, gut microbiota and antimicrobial resistance genes

    Get PDF
    Past antimicrobial misuse has led to the spread of antimicrobial resistance amongst pathogens, reportedly a major public health threat. Attempts to reduce the spread of antimicrobial resistant (AMR) bacteria are in place worldwide, among which finding alternatives to antimicrobials have a pivotal role. Such molecules could be used as “green alternatives” to reduce the bacterial load either by targeting specific bacterial groups or more generically, functioning as biocides when delivered in vivo. In this study, the effect of in-water peracetic acid as a broad-spectrum antibiotic alternative for broilers was assessed via hydrolysis of precursors sodium percarbonate and tetraacetylethylenediamine. Six equidistant peracetic acid levels were tested from 0 to 50 ppm using four pens per treatment and 4 birds per pen (i.e., 16 birds per treatment and 96 in total). Peracetic acid was administered daily from d 7 to 14 of age whilst measuring performance parameters and end-point bacterial concentration (qPCR) in crop, jejunum, and ceca, as well as crop 16S sequencing. PAA treatment, especially at 20, 30, and 40 ppm, increased body weight at d 14, and feed intake during PAA exposure compared to control (P < 0.05). PAA decreased bacterial concentration in the crop only (P < 0.05), which was correlated to better performance (P < 0.05). Although no differences in alpha- and beta-diversity were found, it was observed a reduction of Lactobacillus (P < 0.05) and Flectobacillus (P < 0.05) in most treatments compared to control, together with an increased abundance of predicted 4-aminobutanoate degradation (V) pathway. The analysis of the AMR genes did not point towards any systematic differences in gene abundance due to treatment administration. This, together with the rest of our observations could indicate that proximal gut microbiota modulation could result in performance amelioration. Thus, peracetic acid may be a valid antimicrobial alternative that could also positively affect performance

    Weierstrass meets Enriques

    Full text link
    We study in detail the degeneration of K3 to T^4/Z_2. We obtain an explicit embedding of the lattice of collapsed cycles of T^4/Z_2 into the lattice of integral cycles of K3 in two different ways. Our first method exploits the duality to the heterotic string on T^3. This allows us to describe the degeneration in terms of Wilson lines. Our second method is based on the blow-up of T^4/Z_2. From this blow-up, we directly construct the full lattice of integral cycles of K3. Finally, we use our results to describe the action of the Enriques involution on elliptic K3 surfaces, finding that a Weierstrass model description is consistent with the Enriques involution only in the F-theory limit.Comment: 35 pages, 9 figure
    • …
    corecore