5 research outputs found

    Critical control of flooding and draining sequences on the environmental risk of Zn-contaminated riverbank sediments

    Get PDF
    Purpose: Diffuse pollution emanating from metal mining impacted sediment could serve as a barrier to achieving European Union Water Framework Directive and US Clean Water Act requirements. UK climate projections (UKCP09) predict increases in rainfall and aridity that will influence river stage alternately exposing and submersing contaminated riverbank sediment. Research focuses on the environmental contaminant dissolved Zn and investigates patterns of release, key geochemical mechanisms controlling Zn mobilisation and the environmental risk of sediment subjected to these perturbations. Materials and methods: Using two laboratory mesocosm experiments, metal mining-contaminated sediment was subjected to alternate wet and dry sequences of different duration and frequency. The first experiment was run to determine the influence of submersion and exposure of contaminated sediment on releases of Zn and to establish environmental risk. The second experiment utilised diffusional equilibration in thin film (DET) to observe the patterns of Zn release, with depth, in the sediment. Pore water chemical analysis at the sediment-water interface enabled elucidation of key geochemical mechanisms of control of Zn mobilisation. Results and discussion: Patterns of Zn release were found to be different, depending on the length of wet and dry period. High concentrations of dissolved Zn were released at the start of a flood for runs with longer dry periods. A buildup of soluble Zn sulphate minerals over long dry periods followed by dissolution on first flood wetting was a key geochemical mechanism controlling Zn release. For longer wet runs, increases in dissolved Mn and Zn were observed over the flood period. Key geochemical mechanisms controlling Zn mobilisation for these runs were: (i) reductive dissolution of Mn (hydr)oxides and release of partitioned Zn over prolonged flood periods followed by (ii) oxidation and precipitation of Mn (hydr)oxides and sorption of Zn on exposure to atmospheric conditions. Conclusions: Mesocosm experiments were a first step in understanding the effects of UK climate projections on the riverbank environment. Contaminated sediment was found to pose a significant environmental risk in response to hydrological perturbations. The ‘transient’ nature of dissolved Zn release could make identifying the exact sources of pollution a challenge; therefore, further field studies are advised to monitor contaminant releases under a range of hydrological conditions and account for complex hydrology at mining sites

    Environmental risk of severely Pb-contaminated riverbank sediment as a consequence of hydrometeorological perturbation

    Get PDF
    Metal mining activities have resulted in the widespread metal pollution of soils and sediments and are a worldwide health concern. Pb is often prolific in metal-mining impacted systems and has acute and chronic toxic effects. Environmental factors controlling diffuse pollution from contaminated riverbank sediment are currently seen as a “black box” from a process perspective. This limits our ability to accurately predict and model releases of dissolved Pb. Previous work by the authors uncovered key mechanisms responsible for the mobilisation of dissolved Zn. The current study identifies key mechanisms controlling the mobilisation of dissolved Pb, and the environmental risk these releases pose, in response to various sequences of “riverbank” inundation/drainage. Mesocosm experiments designed to mimic the riverbank environment were run using sediment severely contaminated with Pb, from a mining-impacted site. Results indicated that, although Pb is generally reported as less mobile than Zn, high concentrations of dissolved Pb are released in response to longer or more frequent flood events. Furthermore, the geochemical mechanisms of release for Zn and Pb were different. For Zn, mechanisms were related to reductive dissolution of Mn (hydr)oxides with higher concentrations released, at depth, over prolonged flood periods. For Pb, key mechanisms of release were related to the solubility of anglesite and the oxidation of primary mineral galena, where periodic drainage events serve to keep sediments oxic, particularly at the surface. The results are concerning because climate projections for the UK indicate a rise in the occurrence of localized heavy rainfall events that could increase flood frequency and/or duration. This study is unique in that it is the first to uncover key mechanisms responsible for dissolved Pb mobilisation from riverbank sediments. The mineralogy at the mining-impacted site is common to many sites worldwide and it is likely the mechanisms identified in this study are widespread

    Critical Shifts in Trace Metal Transport and Remediation Performance under Future Low River Flows.

    Get PDF
    Exceptionally low river flows are predicted to become more frequent and more severe across many global regions as a consequence of climate change. Investigations of trace metal transport dynamics across streamflows reveal stark changes in water chemistry, metal transformation processes, and remediation effectiveness under exceptionally low-flow conditions. High spatial resolution hydrological and water quality datasets indicate that metal-rich groundwater will exert a greater control on stream water chemistry and metal concentrations because of climate change. This is because the proportion of stream water sourced from mined areas and mineralized strata will increase under predicted future low-flow scenarios (from 25% under Q45 flow to 66% under Q99 flow in this study). However, mineral speciation modelling indicates that changes in stream pH and hydraulic conditions at low flow will decrease aqueous metal transport and increase sediment metal concentrations by enhancing metal sorption directly to streambed sediments. Solute transport modelling further demonstrates how increases in the importance of metal-rich diffuse groundwater sources at low flow could minimize the benefits of point source metal contamination treatment. Understanding metal transport dynamics under exceptionally low flows, as well as under high flows, is crucial to evaluate ecosystem service provision and remediation effectiveness in watersheds under future climate change scenarios
    corecore