18 research outputs found

    Preventing cognitive decline and dementia from cerebral small vessel disease: The LACI-1 Trial. Protocol and statistical analysis plan of a phase IIa dose escalation trial testing tolerability, safety and effect on intermediary endpoints of isosorbide mononitrate and cilostazol, separately and in combination

    Get PDF
    Rationale The pathophysiology of most lacunar stroke, a form of small vessel disease, is thought to differ from large artery atherothrombo- or cardio-embolic stroke. Licensed drugs, isosorbide mononitrate and cilostazol, have promising mechanisms of action to support their testing to prevent stroke recurrence, cognitive impairment, or radiological progression after lacunar stroke. Aim LACI-1 will assess the tolerability, safety, and efficacy, by dose, of isosorbide mononitrate and cilostazol, alone and in combination, in patients with ischemic lacunar stroke. Sample size A sample of 60 provides 80+% power (significance 0.05) to detect a difference of 35% (90% versus 55%) between those reaching target dose on one versus both drugs. Methods and design LACI-1 is a phase IIa partial factorial, dose-escalation, prospective, randomized, open label, blinded endpoint trial. Participants are randomized to isosorbide mononitrate and/or cilostazol for 11 weeks with dose escalation to target as tolerated in two centers (Edinburgh, Nottingham). At three visits, tolerability, safety, blood pressure, pulse wave velocity, and platelet function are assessed, plus magnetic resonance imaging to assess cerebrovascular reactivity in a subgroup. Study outcomes Primary: proportion of patients completing study achieving target maximum dose. Secondary Symptoms whilst taking medications; safety (hemorrhage, recurrent vascular events, falls); blood pressure, platelet function, arterial stiffness, and cerebrovascular reactivity. Discussion This study will inform the design of a larger phase III trial of isosorbide mononitrate and cilostazol in lacunar stroke, whilst providing data on the drugs’ effects on vascular and platelet function

    Visual recognition memory, manifested as long-term habituation, requires synaptic plasticity in V1

    No full text
    Familiarity with stimuli that bring neither reward nor punishment, manifested through behavioural habituation, enables organisms to detect novelty and devote cognition to important elements of the environment. Here we describe in mice a form of long-term behavioural habituation to visual grating stimuli that is selective for stimulus orientation. Orientation-selective habituation (OSH) can be observed both in exploratory behaviour in an open arena, and in a stereotyped motor response to visual stimuli in head-restrained mice. We show that the latter behavioural response, termed a vidget, requires V1. Parallel electrophysiological recordings in V1 reveal that plasticity, in the form of stimulus-selective response potentiation (SRP), occurs in layer 4 of V1 as OSH develops. Local manipulations of V1 that prevent and reverse electrophysiological modifications likewise prevent and reverse memory demonstrated behaviourally. These findings suggest that a form of long-term visual recognition memory is stored via synaptic plasticity in primary sensory cortex
    corecore