117 research outputs found

    Phase correction for ALMA with 183 GHz water vapour radiometers

    Get PDF
    Fluctuating properties of the atmosphere, and in particular its water vapour content, give rise to phase fluctuations of astronomical signals which, if uncorrected, lead to rapid deterioration of performance of (sub)-mm interferometers on long baselines. The Atacama Large Millimetre/submillimeter Array (ALMA) uses a 183 GHz Water Vapour Radiometer (WVR) system to help correct these fluctuations and provide much improved performance on long baselines and at high frequencies. Here we describe the design of the overall ALMA WVR system, the choice of design parameters and the data processing strategy. We also present results of initial tests that demonstrate both the large improvement in phase stability that can be achieved and the very low contribution to phase noise from the WVRs. Finally, we describe briefly the main limiting factors to the accuracy of phase correction seen in these initial tests; namely, the degrading influence of cloud and the residual phase fluctuations that are most likely to be due to variations in the density of the dry component of the ai

    The effects of supernovae on the dynamical evolution of binary stars and star clusters

    Full text link
    In this chapter I review the effects of supernovae explosions on the dynamical evolution of (1) binary stars and (2) star clusters. (1) Supernovae in binaries can drastically alter the orbit of the system, sometimes disrupting it entirely, and are thought to be partially responsible for `runaway' massive stars - stars in the Galaxy with large peculiar velocities. The ejection of the lower-mass secondary component of a binary occurs often in the event of the more massive primary star exploding as a supernova. The orbital properties of binaries that contain massive stars mean that the observed velocities of runaway stars (10s - 100s km s1^{-1}) are consistent with this scenario. (2) Star formation is an inherently inefficient process, and much of the potential in young star clusters remains in the form of gas. Supernovae can in principle expel this gas, which would drastically alter the dynamics of the cluster by unbinding the stars from the potential. However, recent numerical simulations, and observational evidence that gas-free clusters are observed to be bound, suggest that the effects of supernova explosions on the dynamics of star clusters are likely to be minimal.Comment: 16 pages, to appear in the 'Handbook of Supernovae', eds. Paul Murdin and Athem Alsabti. This version replaces an earlier version that contained several typo

    Duration of hospital participation in a nationwide stroke registry is associated with improved quality of care

    Get PDF
    BACKGROUND: There are several proven therapies for patients with ischemic stroke or transient ischemic attack (TIA), including prophylaxis of deep venous thrombosis (DVT) and initiation of antithrombotic medications within 48 h and at discharge. Stroke registries have been promoted as a means of increasing use of such interventions, which are currently underutilized. METHODS: From 1999 through 2003, 86 U.S. hospitals participated in Ethos, a voluntary web-based acute stroke treatment registry. Detailed data were collected on all patients admitted with a diagnosis of TIA or ischemic stroke. Rates of optimal treatment (defined as either receipt or a valid contraindication) were examined within each hospital as a function of its length of time in registry. Generalized estimating equations were used to adjust for patient and hospital characteristics. RESULTS: A total of 16,301 patients were discharged with a diagnosis of stroke or TIA from 50 hospitals that participated for more than 1 year. Rates of optimal treatment during the first 3 months of participation were as follows: 92.5% for antithrombotic medication within 48 h, 84.6% for antithrombotic medications at discharge, and 77.1% for DVT prophylaxis. Rates for all treatments improved with duration of participation in the registry (p < 0.05), with the most dramatic improvements in the first year. CONCLUSION: In a large cohort of patients with stroke or TIA, three targeted quality-improvement measures improved among hospitals participating in a disease-specific registry. Although the changes could be attributed to interventions other than the registry, these findings demonstrate the potential for hospital-level interventions to improve care for patients with stroke and TIA

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Interconversion of Functional Motions between Mesophilic and Thermophilic Adenylate Kinases

    Get PDF
    Dynamic properties are functionally important in many proteins, including the enzyme adenylate kinase (AK), for which the open/closed transition limits the rate of catalytic turnover. Here, we compare our previously published coarse-grained (double-well Gō) simulation of mesophilic AK from E. coli (AKmeso) to simulations of thermophilic AK from Aquifex aeolicus (AKthermo). In AKthermo, as with AKmeso, the LID domain prefers to close before the NMP domain in the presence of ligand, but LID rigid-body flexibility in the open (O) ensemble decreases significantly. Backbone foldedness in O and/or transition state (TS) ensembles increases significantly relative to AKmeso in some interdomain backbone hinges and within LID. In contact space, the TS of AKthermo has fewer contacts at the CORE-LID interface but a stronger contact network surrounding the CORE-NMP interface than the TS of AKmeso. A “heated” simulation of AKthermo at 375K slightly increases LID rigid-body flexibility in accordance with the “corresponding states” hypothesis. Furthermore, while computational mutation of 7 prolines in AKthermo to their AKmeso counterparts produces similar small perturbations, mutation of these sites, especially positions 8 and 155, to glycine is required to achieve LID rigid-body flexibility and hinge flexibilities comparable to AKmeso. Mutating the 7 sites to proline in AKmeso reduces some hinges' flexibilities, especially hinge 2, but does not reduce LID rigid-body flexibility, suggesting that these two types of motion are decoupled in AKmeso. In conclusion, our results suggest that hinge flexibility and global functional motions alike are correlated with but not exclusively determined by the hinge residues. This mutational framework can inform the rational design of functionally important flexibility and allostery in other proteins toward engineering novel biochemical pathways

    Modeling Signal Propagation Mechanisms and Ligand-Based Conformational Dynamics of the Hsp90 Molecular Chaperone Full-Length Dimer

    Get PDF
    Hsp90 is a molecular chaperone essential for protein folding and activation in normal homeostasis and stress response. ATP binding and hydrolysis facilitate Hsp90 conformational changes required for client activation. Hsp90 plays an important role in disease states, particularly in cancer, where chaperoning of the mutated and overexpressed oncoproteins is important for function. Recent studies have illuminated mechanisms related to the chaperone function. However, an atomic resolution view of Hsp90 conformational dynamics, determined by the presence of different binding partners, is critical to define communication pathways between remote residues in different domains intimately affecting the chaperone cycle. Here, we present a computational analysis of signal propagation and long-range communication pathways in Hsp90. We carried out molecular dynamics simulations of the full-length Hsp90 dimer, combined with essential dynamics, correlation analysis, and a signal propagation model. All-atom MD simulations with timescales of 70 ns have been performed for complexes with the natural substrates ATP and ADP and for the unliganded dimer. We elucidate the mechanisms of signal propagation and determine “hot spots” involved in interdomain communication pathways from the nucleotide-binding site to the C-terminal domain interface. A comprehensive computational analysis of the Hsp90 communication pathways and dynamics at atomic resolution has revealed the role of the nucleotide in effecting conformational changes, elucidating the mechanisms of signal propagation. Functionally important residues and secondary structure elements emerge as effective mediators of communication between the nucleotide-binding site and the C-terminal interface. Furthermore, we show that specific interdomain signal propagation pathways may be activated as a function of the ligand. Our results support a “conformational selection model” of the Hsp90 mechanism, whereby the protein may exist in a dynamic equilibrium between different conformational states available on the energy landscape and binding of a specific partner can bias the equilibrium toward functionally relevant complexes

    Relativistic Binaries in Globular Clusters

    Get PDF
    Galactic globular clusters are old, dense star systems typically containing 10\super{4}--10\super{7} stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of hard binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct {\it N}-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl

    Relativistic Dynamics and Extreme Mass Ratio Inspirals

    Full text link
    It is now well-established that a dark, compact object (DCO), very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes - how some of them grow by orders of magnitude in mass - lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.Comment: Update from the first version, 151 pages, accepted for publication @ Living Reviews in Relativit

    Binary and Millisecond Pulsars

    Full text link
    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.Comment: 77 pages, 30 figures, available on-line at http://www.livingreviews.org/lrr-2005-
    corecore