1,969 research outputs found

    Molecular dynamics simulation study of the high frequency sound waves in the fragile glass former ortho-terphenyl

    Full text link
    Using a realistic flexible molecule model of the fragile glass former orthoterphenyl, we calculate via molecular dynamics simulation the collective dynamic structure factor, recently measured in this system by Inelastic X-ray Scattering. The comparison of the simulated and measured dynamic structure factor, and the study of its properties in an extended momentum, frequency and temperature range allows: i) to conclude that the utilized molecular model gives rise to a dynamic structure factor in agreement with the experimental data, for those thermodynamic states and momentum values where the latter are available; ii) to confirm the existence of a slope discontinuity on the T-dependence of the sound velocity that, at finite Q, takes place at a temperature T_x higher than the calorimetric glass transition temperature T_g; iii) to find that the values of T_x is Q-dependent and that its vanishing Q limit is consistent with T_g. The latter finding is interpreted within the framework of the current description of the dynamics of supercooled liquids in terms of exploration of the potential energy landscape.Comment: RevTex, 9 pages, 10 eps figure

    Phase diagram of a solution undergoing inverse melting

    Full text link
    The phase diagram of α\alpha-cyclodextrin/water/4-methylpyridine solutions, a system undergoing inverse melting, has been studied by differential scanning calorimetry, rheological methods, and X-rays diffraction. Two different fluid phases separated by a solid region have been observed in the high α\alpha-cyclodextrin concentration range (cc≥\geq150 mg/ml). Decreasing cc, the temperature interval where the solid phase exists decreases and eventually disappears, and a first order phase transition is observed between the two different fluid phases.Comment: 4 pages, 5 figures, accepted on Physical Review E (R

    High frequency acoustic modes in liquid gallium at the melting point

    Full text link
    The microscopic dynamics in liquid gallium (l-Ga) at melting (T=315 K) has been studied by inelastic x-ray scattering. We demonstrate the existence of collective acoustic-like modes up to wave-vectors above one half of the first maximum of the static structure factor, at variance with earlier results from inelastic neutron scattering data [F.J. Bermejo et al. Phys. Rev. E 49, 3133 (1994)]. Despite the structural (an extremely rich polymorphism and rather complex phase diagram) and electronic (mixed valence) peculiarity of l-Ga, its collective dynamics is strikingly similar to the one of Van der Walls and alkali metals liquids. This result speaks in favor of the universality of the short time dynamics in monatomic liquids rather than of system-specific dynamics.Comment: LaTex format, 11 pages, 4 EncapsulatedPostScript figure

    Relaxation processes in harmonic glasses?

    Full text link
    A relaxation process, with the associated phenomenology of sound attenuation and sound velocity dispersion, is found in a simulated harmonic Lennard-Jones glass. We propose to identify this process with the so called microscopic (or instantaneous) relaxation process observed in real glasses and supercooled liquids. A model based on the memory function approach accounts for the observation, and allows to relate to each others: 1) the characteristic time and strength of this process, 2) the low frequency limit of the dynamic structure factor of the glass, and 3) the high frequency sound attenuation coefficient, with its observed quadratic dependence on the momentum transfer.Comment: 11 pages, 3 figure

    Evidence of anomalous dispersion of the generalized sound velocity in glasses

    Full text link
    The dynamic structure factor, S(Q,w), of vitreous silica, has been measured by inelastic X-ray scattering in the exchanged wavevector (Q) region Q=4-16.5 nm-1 and up to energies hw=115 meV in the Stokes side. The unprecedented statistical accuracy in such an extended energy range allows to accurately determine the longitudinal current spectra, and the energies of the vibrational excitations. The simultaneous observation of two excitations in the acoustic region, and the persistence of propagating sound waves up to Q values comparable with the (pseudo-)Brillouin zone edge, allow to observe a positive dispersion in the generalized sound velocity that, around Q=5 nm-1, varies from 6500 to 9000 m/s: this phenomenon was never experimentally observed in a glass.Comment: 5 pages, 3 figures. To appear in Phys. Rev.

    Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and incurable disease. Poor prognosis is due to multiple reasons, including acquisition of resistance to gemcitabine, the first-line chemotherapeutic approach. Thus, there is a strong need for novel therapies, targeting more directly the molecular aberrations of this disease. We found that chronic exposure of PDAC cells to gemcitabine selected a subpopulation of cells that are drug-resistant (DR-PDAC cells). Importantly, alternative splicing (AS) of the pyruvate kinase gene (PKM) was differentially modulated in DR-PDAC cells, resulting in promotion of the cancer-related PKM2 isoform, whose high expression also correlated with shorter recurrence-free survival in PDAC patients. Switching PKM splicing by antisense oligonucleotides to favor the alternative PKM1 variant rescued sensitivity of DR-PDAC cells to gemcitabine and cisplatin, suggesting that PKM2 expression is required to withstand drug-induced genotoxic stress. Mechanistically, upregulation of the polypyrimidine-tract binding protein (PTBP1), a key modulator of PKM splicing, correlated with PKM2 expression in DR-PDAC cell lines. PTBP1 was recruited more efficiently to PKM pre-mRNA in DR- than in parental PDAC cells. Accordingly, knockdown of PTBP1 in DR-PDAC cells reduced its recruitment to the PKM pre-mRNA, promoted splicing of the PKM1 variant and abolished drug resistance. Thus, chronic exposure to gemcitabine leads to upregulation of PTBP1 and modulation of PKM AS in PDAC cells, conferring resistance to the drug. These findings point to PKM2 and PTBP1 as new potential therapeutic targets to improve response of PDAC to chemotherapy.Oncogene advance online publication, 3 August 2015; doi:10.1038/onc.2015.270
    • …
    corecore