12 research outputs found

    Glomerular filtration is reduced by high tidal volume ventilation in an in vivo healthy rat model

    Get PDF
    Mechanical ventilation has been associated with organ failure in patients with acute respiratory distress syndrome. The present study examines the effects of tidal volume (V T) on renal function using two V T values (8 and 27 mL/kg) in anesthetized, paralyzed and mechanically ventilated male Wistar rats. Animals were randomized into two groups of 6 rats each: V T8 (V T, 8 mL/kg; 61.50 ± 0.92 breaths/min; positive end-expiratory pressure, 3.0 cmH2O; peak airway pressure (PAW), 11.8 ± 2.0 cmH2O), and V T27 (V T, 27 mL/kg; 33.60 ± 1.56 breaths/min; positive end-expiratory pressure, none, and PAW, 22.7 ± 4.0 cmH2O). Throughout the experiment, mean PAW remained comparable between the two groups (6.33 ± 0.21 vs 6.50 ± 0.22 cmH2O). For rats in the V T27 group, inulin clearance (mL·min-1·body weight-1) decreased acutely after 60 min of mechanical ventilation and even more significantly after 90 min, compared with baseline values (0.60 ± 0.05 and 0.45 ± 0.05 vs 0.95 ± 0.07; P < 0.001), although there were no differences between groups in mean arterial pressure or gasometric variables. In the V T8 group, inulin clearance at 120 min of mechanical ventilation remained unchanged in relation to baseline values (0.72 ± 0.03 vs 0.80 ± 0.05). The V T8 and V T27 groups did not differ in terms of serum thiobarbituric acid reactive substances (3.97 ± 0.27 vs 4.02 ± 0.45 nmol/mL) or endothelial nitric oxide synthase expression (94.25 ± 2.75 vs 96.25 ± 2.39%). Our results show that glomerular filtration is acutely affected by high tidal volume ventilation but do not provide information about the mechanism

    Urinary NO3 excretion and renal failure in indinavir-treated patients

    No full text
    Treatment with indinavir (IDV), a protease inhibitor, is frequently associated with renal abnormalities. We determined the incidence of renal failure (creatinine clearance <80 mL min-1 1.73 (m²)-1) in HIV patients treated with highly active antiretroviral therapy, including IDV, and investigated the possible mechanisms and risk factors of IDV nephrotoxicity. Thirty-six patients receiving IDV were followed for 3 years. All were assessed for age, body weight, duration of infection, duration of IDV treatment, sulfur-derivative use, total cholesterol, triglycerides, magnesium, sodium, potassium, creatinine, and urinalysis. We also determined renal function in terms of creatinine clearance, urine osmolality and fractional excretion of sodium, potassium, and water. Urinary nitrate (NO3) excretion was measured in 18 IDV-treated patients and compared with that of 8 patients treated with efavirenz, a drug without renal side effects. Sterile leukocyturia occurred in 80.5% of the IDV-treated patients. Creatinine clearance <80 mL min-1 1.73 (m²)-1 was observed in 22 patients (61%) and was associated with low body weight and the use of sulfur-derivatives. These patients also had lower osmolality, lower urine volume and a higher fractional excretion of water compared to the normal renal function group. Urinary NO3 excretion was significantly lower in IDV-treated patients (809 ± 181 µM NO3-/mg creatinine) than in efavirenz-treated patients (2247 ± 648 µM NO3-/mg creatinine, P < 0.01). The lower NO3 excretion suggests that IDV decreases nitric oxide production
    corecore