13,553 research outputs found
Nash implementation with little communication
The paper considers the communication complexity (measured in bits or real numbers) of Nash implementation of social choice rules. A key distinction is whether we restrict to the traditional one-stage mechanisms or allow multi-stage mechanisms. For one-stage mechanisms, the paper shows that for a large and important subclass of monotonic choice rules -- called "intersection monotonic" -- the total message space size needed for one-stage Nash implementation is essentially the same as that needed for "verification" (with honest agents who are privately informed about their preferences). According to Segal (2007), the latter is the size of the space of minimally informative budget equilibria verifying the choice rule. However, multi-stage mechanisms allow a drastic reduction in communication complexity. Namely, for an important subclass of intersection-monotonic choice rules (which includes rules based on coalitional blocking such as exact or approximate Pareto efficiency, stability, and envy-free allocations) we propose a two-stage Nash implementation mechanism in which each agent announces no more than two alternatives plus one bit per agent in any play. Such two-stage mechanisms bring about an exponential reduction in the communication complexity of Nash implementation for discrete communication measured in bits, or a reduction from infinite- to low-dimensional continuous communication.Monotonic social choice rules, Nash implementation, communication complexity,verification, realization, budget sets, price equilibria
Recommended from our members
Assessing stationary distributions derived from chromatin contact maps.
BACKGROUND:The spatial configuration of chromosomes is essential to various cellular processes, notably gene regulation, while architecture related alterations, such as translocations and gene fusions, are often cancer drivers. Thus, eliciting chromatin conformation is important, yet challenging due to compaction, dynamics and scale. However, a variety of recent assays, in particular Hi-C, have generated new details of chromatin structure, spawning a number of novel biological findings. Many findings have resulted from analyses on the level of native contact data as generated by the assays. Alternatively, reconstruction based approaches often proceed by first converting contact frequencies into distances, then generating a three dimensional (3D) chromatin configuration that best recapitulates these distances. Subsequent analyses can enrich contact level analyses via superposition of genomic attributes on the reconstruction. But, such advantages depend on the accuracy of the reconstruction which, absent gold standards, is inherently difficult to assess. Attempts at accuracy evaluation have relied on simulation and/or FISH imaging that typically features a handful of low resolution probes. While newly advanced multiplexed FISH imaging offers possibilities for refined 3D reconstruction accuracy evaluation, availability of such data is limited due to assay complexity and the resolution thereof is appreciably lower than the reconstructions being assessed. Accordingly, there is demand for new methods of reconstruction accuracy appraisal. RESULTS:Here we explore the potential of recently proposed stationary distributions, hereafter StatDns, derived from Hi-C contact matrices, to serve as a basis for reconstruction accuracy assessment. Current usage of such StatDns has focussed on the identification of highly interactive regions (HIRs): computationally defined regions of the genome purportedly involved in numerous long-range intra-chromosomal contacts. Consistent identification of HIRs would be informative with respect to inferred 3D architecture since the corresponding regions of the reconstruction would have an elevated number of k nearest neighbors (kNNs). More generally, we anticipate a monotone decreasing relationship between StatDn values and kNN distances. After initially evaluating the reproducibility of StatDns across replicate Hi-C data sets, we use this implied StatDn - kNN relationship to gauge the utility of StatDns for reconstruction validation, making recourse to both real and simulated examples. CONCLUSIONS:Our analyses demonstrate that, as constructed, StatDns do not provide a suitable measure for assessing the accuracy of 3D genome reconstructions. Whether this is attributable to specific choices surrounding normalization in defining StatDns or to the logic underlying their very formulation remains to be determined
The body in the library: adventures in realism
This essay looks at two aspects of the virtual ‘material world’ of realist fiction: objects encountered by the protagonist and the latter’s body. Taking from Sartre two angles on the realist pact by which readers agree to lend
their bodies, feelings, and experiences to the otherwise ‘languishing signs’ of the text, it goes on to examine two sets of first-person fictions published between 1902 and 1956 — first, four modernist texts in which banal objects defy and then gratify the protagonist, who ends up ready and almost able to write; and, second, three novels in which the body of the protagonist is indeterminate in its sex, gender, or sexuality. In each of these cases, how do we as readers make texts work for us as ‘an adventure of the body’
Message and time efficient multi-broadcast schemes
We consider message and time efficient broadcasting and multi-broadcasting in
wireless ad-hoc networks, where a subset of nodes, each with a unique rumor,
wish to broadcast their rumors to all destinations while minimizing the total
number of transmissions and total time until all rumors arrive to their
destination. Under centralized settings, we introduce a novel approximation
algorithm that provides almost optimal results with respect to the number of
transmissions and total time, separately. Later on, we show how to efficiently
implement this algorithm under distributed settings, where the nodes have only
local information about their surroundings. In addition, we show multiple
approximation techniques based on the network collision detection capabilities
and explain how to calibrate the algorithms' parameters to produce optimal
results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459
The Long-Term Effects of Cross-Listing Investor Recognition, and Ownership Structure on Valuation
The authors show that the widening of a foreign firm's U.S. investor base and the improved information environment associated with cross-listing on a U.S. exchange each have a separately identifiable effect on a firm's valuation. The increase in valuation associated with cross-listing is transitory, not permanent. Valuations of Canadian firms peak in the year of cross-listing and fall monotonically thereafter, regardless of the level of U.S. investor holdings or the ownership structure of the firm. Cross-listed firms with a 20 per cent or more blockholder attract a similar number of U.S. institutional investors as widely held firms, on average, but experience a lower increase in valuation at high levels of investor recognition. While U.S. investors are less willing to invest in firms with dual-class shares, these firms benefit more from cross-listing even when they fail to widen their U.S. investor base, suggesting that the reduction in information asymmetry between controlling and minority investors has a separate impact on valuation for firms where agency problems are greatest.Financial markets; International topics
A simple status quo that ensures participation (with application to efficient bargaining)
We consider Bayesian incentive-compatible mechanisms with independent types and either private values or interdependent values that satisfy a form of "congruence." We show that in these settings, interim participation constraints are satisfied when the status quo is the randomized allocation that has the same distribution as the equilibrium allocation in the mechanism. Moreover, when utilities are convex in the allocation, we can instead satisfy participation constraints with the deterministic status quo equal to the expected equilibrium allocation in the mechanism. For quasilinear settings, these observations imply the possibility of efficient bargaining when the status quo specifies the expected efficient decision provided that the total surplus is convex in the decision.Efficient property rights, asymmetric information bargaining, transaction costs
Double wells, scalar fields and quantum phase transitions in ions traps
Since Hund's work on the ammonia molecule, the double well potential has
formed a key paradigm in physics. Its importance is further underlined by the
central role it plays in the Landau theory of phase transitions. Recently, the
study of entanglement properties of many-body systems has added a new angle to
the study of quantum phase transitions of discrete and continuous degrees of
freedom, i.e., spin and harmonic chains. Here we show that control of the
radial degree of freedom of trapped ion chains allows for the simulation of
linear and non-linear Klein-Gordon fields on a lattice, in which the parameters
of the lattice, the non-linearity and mass can be controlled at will. The
system may be driven through a phase transition creating a double well
potential between different configurations of the ion crystal. The dynamics of
the system are controllable, local properties are measurable and tunnelling in
the double well potential would be observable.Comment: 6 pages, 5 figure
Models of Civil-Military Relationships at the Elite Level
http://deepblue.lib.umich.edu/bitstream/2027.42/50840/1/58.pd
- …