512 research outputs found

    Dietary Sodium Restriction Reverses Vascular Endothelial Dysfunction in Middle-Aged/Older Adults With Moderately Elevated Systolic Blood Pressure

    Get PDF
    ObjectivesThis study sought to determine the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP) (130–159 mm Hg) and the associated physiological mechanisms.BackgroundVascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown.MethodsSeventeen subjects (11 men and 6 women; mean age, 62 ± 7 years) completed a, randomized crossover study of 4 weeks of both low (DSR) and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability, and oxidative stress-associated mechanisms were assessed following each condition.ResultsUrinary sodium excretion was reduced by ∌50% (to 70 ± 30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following DSR (p < 0.005). Low sodium markedly enhanced NO-mediated EDD (greater ΔFBFACh with endothelial NO synthase inhibition) without changing endothelial NO synthase expression/activation (Ser 1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (all p < 0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged.ConclusionsDSR largely reversed both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects

    Superoxide Signaling in Perivascular Adipose Tissue Promotes Age-Related Artery Stiffness

    Get PDF
    We tested the hypothesis that superoxide signaling within aortic perivascular adipose tissue (PVAT) contributes to large elastic artery stiffening in old mice. Young (4-6 months), old (26-28 months), and old treated with 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), a superoxide scavenger (1 mm in drinking water for 3 weeks), male C57BL6/N mice were studied. Compared with young, old had greater large artery stiffness assessed by aortic pulse wave velocity (aPWV, 436 ± 9 vs. 344 ± 5 cm s(-1)) and intrinsic mechanical testing (3821 ± 427 vs. 1925 ± 271 kPa) (both P \u3c 0.05). TEMPOL treatment in old reversed both measures of arterial stiffness. Aortic PVAT superoxide production was greater in old (P \u3c 0.05 vs. Y), which was normalized with TEMPOL. Compared with young, old controls had greater pro-inflammatory proteins in PVAT-conditioned media (P \u3c 0.05). Young recipient mice transplanted with PVAT from old compared with young donors for 8 weeks had greater aPWV (409 ± 7 vs. 342 ± 8 cm s(-1)) and intrinsic mechanical properties (3197 ± 647 vs. 1889 ± 520 kPa) (both P \u3c 0.05), which was abolished with TEMPOL supplementation in old donors. Tissue-cultured aortic segments from old in the presence of PVAT had greater mechanical stiffening compared with old cultured in the absence of PVAT and old with PVAT and TEMPOL (both, P \u3c 0.05). In addition, PVAT-derived superoxide was associated with arterial wall hypertrophy and greater adventitial collagen I expression with aging that was attenuated by TEMPOL. Aging or TEMPOL treatment did not affect blood pressure. Our findings provide evidence for greater age-related superoxide production and pro-inflammatory proteins in PVAT, and directly link superoxide signaling in PVAT to large elastic artery stiffness

    Analysis of Six tonB Gene Homologs in Bacteroides Fragilis Revealed That tonB3 is Essential for Survival in Experimental Intestinal Colonization and Intra-Abdominal Infection

    Get PDF
    The opportunistic, anaerobic pathogen and commensal of the human large intestinal tract, Bacteroides fragilis strain 638R, contains six predicted TonB proteins, termed TonB1-6, four ExbBs orthologs, ExbB1-4, and five ExbDs orthologs, ExbD1-5. The inner membrane TonB/ExbB/ExbD complex harvests energy from the proton motive force (Δp), and the TonB C-terminal domain interacts with and transduces energy to outer membrane TonB-dependent transporters (TBDTs). However, TonB’s role in activating nearly one hundred TBDTs for nutrient acquisition in B. fragilis during intestinal colonization and extraintestinal infection has not been established. In this study, we show that growth was abolished in the ΔtonB3 mutant when heme, vitamin B(12), Fe(III)-ferrichrome, starch, mucin-glycans, or N-linked glycans were used as a substrate for growth in vitro. Genetic complementation of the ΔtonB3 mutant with the tonB3 gene restored growth on these substrates. The ΔtonB1, ΔtonB2, ΔtonB4, ΔtonB5, and ΔtonB6 single mutants did not show a growth defect. This indicates that there was no functional compensation for the lack of TonB3, and it demonstrates that TonB3, alone, drives the TBDTs involved in the transport of essential nutrients. The ΔtonB3 mutant had a severe growth defect in a mouse model of intestinal colonization compared to the parent strain. This intestinal growth defect was enhanced in the ΔtonB3 ΔtonB6 double mutant strain, which completely lost its ability to colonize the mouse intestinal tract compared to the parent strain. The ΔtonB1, ΔtonB2, ΔtonB4, and ΔtonB5 mutants did not significantly affect intestinal colonization. Moreover, the survival of the ΔtonB3 mutant strain was completely eradicated in a rat model of intra-abdominal infection. Taken together, these findings show that TonB3 was essential for survival in vivo. The genetic organization of tonB1, tonB2, tonB4, tonB5, and tonB6 gene orthologs indicates that they may interact with periplasmic and nonreceptor outer membrane proteins, but the physiological relevance of this has not been defined. Because anaerobic fermentation metabolism yields a lower Δp than aerobic respiration and B. fragilis has a reduced redox state in its periplasmic space—in contrast to an oxidative environment in aerobes—it remains to be determined if the diverse system of TonB/ExbB/ExbD orthologs encoded by B. fragilis have an increased sensitivity to PMF (relative to aerobic bacteria) to allow for the harvesting of energy under anaerobic conditions

    Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice.

    Get PDF
    Aortic stiffening is a major independent risk factor for cardiovascular diseases, cognitive dysfunction, and other chronic disorders of aging. Mitochondria-derived reactive oxygen species are a key source of arterial oxidative stress, which may contribute to arterial stiffening by promoting adverse structural changes-including collagen overabundance and elastin degradation-and enhancing inflammation, but the potential for mitochondria-targeted therapeutic strategies to ameliorate aortic stiffening with primary aging is unknown. We assessed aortic stiffness [pulse-wave velocity (aPWV)], ex vivo aortic intrinsic mechanical properties [elastic modulus (EM) of collagen and elastin regions], and aortic protein expression in young (~6 mo) and old (~27 mo) male C57BL/6 mice consuming normal drinking water (YC and OC) or water containing mitochondria-targeted antioxidant MitoQ (250 ”M; YMQ and OMQ) for 4 wk. Both baseline and postintervention aPWV values were higher in OC vs. YC (post: 482 ± 21 vs. 420 ± 5 cm/s, P < 0.05). MitoQ had no effect in young mice but decreased aPWV in old mice (OMQ, 426 ± 20, P < 0.05 vs. OC). MitoQ did not affect age-associated increases in aortic collagen-region EM, collagen expression, or proinflammatory cytokine expression, but partially attenuated age-associated decreases in elastin region EM and elastin expression. Our results demonstrate that MitoQ reverses in vivo aortic stiffness in old mice and suggest that mitochondria-targeted antioxidants may represent a novel, promising therapeutic strategy for decreasing aortic stiffness with primary aging and, possibly, age-related clinical disorders in humans. The destiffening effects of MitoQ treatment may be at least partially mediated by attenuation/reversal of age-related aortic elastin degradation. NEW & NOTEWORTHY We show that 4 wk of treatment with the mitochondria-specific antioxidant MitoQ in mice completely reverses the age-associated elevation in aortic stiffness, assessed as aortic pulse-wave velocity. The destiffening effects of MitoQ treatment may be at least partially mediated by attenuation of age-related aortic elastin degradation. Our results suggest that mitochondria-targeted therapeutic strategies may hold promise for decreasing arterial stiffening with aging in humans, possibly decreasing the risk of many chronic age-related clinical disorders

    Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice

    Get PDF
    We tested the hypothesis that supplementation of nicotinamide mononucleotide (NMN), a key NAD (+) intermediate, increases arterial SIRT1 activity and reverses age‐associated arterial dysfunction and oxidative stress. Old control mice (OC) had impaired carotid artery endothelium‐dependent dilation (EDD) (60 ± 5% vs. 84 ± 2%), a measure of endothelial function, and nitric oxide (NO)‐mediated EDD (37 ± 4% vs. 66 ± 6%), compared with young mice (YC). This age‐associated impairment in EDD was restored in OC by the superoxide ([Formula: see text]) scavenger TEMPOL (82 ± 7%). OC also had increased aortic pulse wave velocity (aPWV, 464 ± 31 cm s(−1) vs. 337 ± 3 cm s(−1)) and elastic modulus (EM, 6407 ± 876 kPa vs. 3119 ± 471 kPa), measures of large elastic artery stiffness, compared with YC. OC had greater aortic [Formula: see text] production (2.0 ± 0.1 vs. 1.0 ± 0.1 AU), nitrotyrosine abundance (a marker of oxidative stress), and collagen‐I, and reduced elastin and vascular SIRT1 activity, measured by the acetylation status of the p65 subunit of NFÎșB, compared with YC. Supplementation with NMN in old mice restored EDD (86 ± 2%) and NO‐mediated EDD (61 ± 5%), reduced aPWV (359 ± 14 cm s(−1)) and EM (3694 ± 315 kPa), normalized [Formula: see text] production (0.9 ± 0.1 AU), decreased nitrotyrosine, reversed collagen‐I, increased elastin, and restored vascular SIRT1 activity. Acute NMN incubation in isolated aortas increased NAD (+) threefold and manganese superoxide dismutase (MnSOD) by 50%. NMN supplementation may represent a novel therapy to restore SIRT1 activity and reverse age‐related arterial dysfunction by decreasing oxidative stress

    A Value-Based Approach to Increase Breast Cancer Screening and Health-Directed Behaviors among American Indian Women

    Get PDF
    American Indian/Alaska Native (AI/AN) women have the lowest cancer-screening rate of any ethnic or racial group; AI/AN women in all regions are less likely than non-Hispanic white women to be diagnosed with localized breast cancer; and those AI/AN women presenting with breast cancer have the lowest 5-year survival rate compared to other ethnic groups. This study found that cultural beliefs are more of a factor in mammography screening behavior than other barriers such as access; and that a more holistic educational intervention designed by AI/AN women prompted individual intent and actions to seek mammograms among AI/AN women >40 and to change unhealthy eating and sedentary lifestyles

    Chronic Supplementation With a Mitochondrial Antioxidant (MitoQ) Improves Vascular Function in Healthy Older Adults.

    Get PDF
    UNLABELLED: Excess reactive oxygen species production by mitochondria is a key mechanism of age-related vascular dysfunction. Our laboratory has shown that supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular endothelial function by reducing mitochondrial reactive oxygen species and ameliorates arterial stiffening in old mice, but the effects in humans are unknown. Here, we sought to translate our preclinical findings to humans and determine the safety and efficacy of MitoQ. Twenty healthy older adults (60-79 years) with impaired endothelial function (brachial artery flow-mediated dilation 7.60 m/s; n=11). Plasma oxidized LDL (low-density lipoprotein), a marker of oxidative stress, also was lower after MitoQ versus placebo (P0.1). These findings in humans extend earlier preclinical observations and suggest that MitoQ and other therapeutic strategies targeting mitochondrial reactive oxygen species may hold promise for treating age-related vascular dysfunction. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02597023.This work was supported by National Institutes of Health (NIH) awards AG049451, AG000279, AG053009, Colorado CTSA UL1 TR001082, and an industry contract with MitoQ Limited (MitoQ Limited provided MitoQ and some financial support). M.P. Murphy is supported by UK MRC MC_U105663142 and as a Wellcome Trust Investigator (110159/Z/15/Z)

    Energy dependence of elliptic flow over a large pseudorapidity range in Au+Au collisions at RHIC

    Full text link
    This paper describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). Data taken at collision energies of sNN=\sqrt{s_{_{NN}}} = 19.6, 62.4, 130 and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of ηâ€Č=âˆŁÎ·âˆŁâˆ’ybeam\eta'=|\eta|-y_{beam}, scale with approximate linearity throughout ηâ€Č\eta', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.Comment: 5 pages, 4 figure
    • 

    corecore