44 research outputs found

    Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells

    Get PDF
    BACKGROUND: Nitrogen-containing bisphosphonates (N-BPs) have been designed to inhibit osteoclast-mediated bone resorption. However, it is now accepted that part of their anti-tumor activities is related to interference with the mevalonate pathway. METHODS: We investigated the effects of zoledronic acid (ZOL), on cell proliferation and protein isoprenylation in two tumoral (LnCAP, PC-3,), and one normal established (PNT1-A) prostatic cell line. To assess if inhibition of geranyl-geranylation by ZOL impairs the biological activity of RhoA GTPase, we studied the LPA-induced formation of stress fibers. The inhibitory effect of ZOL on geranyl geranyl transferase I was checked biochemically. Activity of ZOL on cholesterol biosynthesis was determined by measuring the incorporation of (14)C mevalonate in cholesterol. RESULTS: ZOL induced dose-dependent inhibition of proliferation of all the three cell lines although it appeared more efficient on the untransformed PNT1A. Whatever the cell line, 20 μM ZOL-induced inhibition was reversed by geranyl-geraniol (GGOH) but neither by farnesol nor mevalonate. After 48 hours treatment of cells with 20 μM ZOL, geranyl-geranylation of Rap1A was abolished whereas farnesylation of HDJ-2 was unaffected. Inhibition of Rap1A geranyl-geranylation by ZOL was rescued by GGOH and not by FOH. Indeed, as observed with treatment by a geranyl-geranyl transferase inhibitor, treatment of PNT1-A cells with 20 μM ZOL prevented the LPA-induced formation of stress fibers. We checked that in vitro ZOL did not inhibit geranyl-geranyl-transferase I. ZOL strongly inhibited cholesterol biosynthesis up to 24 hours but at 48 hours 90% of this biosynthesis was rescued. CONCLUSION: Although zoledronic acid is currently the most efficient bisphosphonate in metastatic prostate cancer management, its mechanism of action in prostatic cells remains unclear. We suggest in this work that although in first intention ZOL inhibits FPPsynthase its main biological actitivity is directed against protein Geranylgeranylation

    Assessing the presence of shared genetic architecture between Alzheimer's disease and major depressive disorder using genome-wide association data

    Get PDF
    We are grateful to the families and individuals who took part in the GS:SFHS and UKB studies, and to all those involved in participant recruitment, data collection, sample processing and QC, including academic researchers, clinical staff, laboratory technicians, clerical workers, IT staff, statisticians and research managers. This work is supported by the Wellcome Trust through a Strategic Award, reference 104036/Z/ 14/Z. We acknowledge with gratitude the financial support received from the Dr Mortimer and Theresa Sackler Foundation. This research has been conducted using the GS:SFHS and UK Biobank (project #4844) resources. GS:SFHS received core funding from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006]. UKB was established using funding from the Wellcome Trust, Medical Research Council, the Scottish Government Department of Health, and the Northwest Regional Development Agency. DJP, IJD, TCR and AMM are members of the University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1). TCR is supported by Alzheimer's Scotland, through the Marjorie MacBeath bequest. Funding from the Biotechnology and Biological Sciences Research Council and Medical Research Council is gratefully acknowledged. We are grateful for the use of summary data from the International Genomics of Alzheimer's Project and the Major Depressive Disorder working group of the Psychiatric Genomics Consortium.Peer reviewedPublisher PD

    Psychoneuroimmunology: application to ocular diseases

    Get PDF
    Psychoneuroimmunology (PNI) is a relatively new discipline within the field of neuroscience which researches the relationship between emotional states, the central and peripheral nervous systems, and the endocrine and immune systems. Negative psychological states, such as stress, anxiety, and depression, may alter immune system regulation and modulation of peripheral cytokines. A plethora of PNI studies have shown that increased psychological stress and depression are associated with an alteration of immune functioning and worsened health outcomes for many conditions. To date, application of PNI methodology has not been reported for ocular diseases. This article provides an historical perspective on the origins of the rift between the emotional and spiritual from physical aspects of disease. A review of how stress is mediated through sympathetic adrenomedullary and hypothalamic pituitary axis activation with shifts in immunity is provided. The literature which supports spirituality in healing is presented. Finally, ocular diseases which would be most amenable to a PNI approach are discussed
    corecore