78 research outputs found

    Access to electronic health records by care setting and provider type: perceptions of cancer care providers in Ontario, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of electronic health records (EHRs) to support the organization and delivery of healthcare is evolving rapidly. However, little is known regarding potential variation in access to EHRs by provider type or care setting. This paper reports on observed variation in the perceptions of access to EHRs by a wide range of cancer care providers covering diverse cancer care settings in Ontario, Canada.</p> <p>Methods</p> <p>Perspectives were sought regarding EHR access and health record completeness for cancer patients as part of an internet survey of 5663 cancer care providers and administrators in Ontario. Data were analyzed using a multilevel logistic regression model. Provider type, location of work, and access to computer or internet were included as covariates in the model.</p> <p>Results</p> <p>A total of 1997 of 5663 (35%) valid responses were collected. Focusing on data from cancer care providers (N = 1247), significant variation in EHR access and health record completeness was observed between provider types, location of work, and level of computer access. Providers who worked in community hospitals were half as likely as those who worked in teaching hospitals to have access to their patients' EHRs (OR 0.45 95% CI: 0.24–0.85, p < 0.05) and were six times less likely to have access to other organizations' EHRs (OR 0.15 95% CI: 0.02–1.00, p < 0.05). Compared to surgeons, nurses (OR 3.47 95% CI: 1.80–6.68, p < 0.05), radiation therapists/physicists (OR 7.86 95% CI: 2.54–25.34, p < 0.05), and other clinicians (OR 4.92 95% CI: 2.15–11.27, p < 0.05) were more likely to report good access to their organization's EHRs.</p> <p>Conclusion</p> <p>Variability in access across different provider groups, organization types, and geographic locations illustrates the fragmented nature of EHR adoption in the cancer system. Along with focusing on technological aspects of EHR adoption within organizations, it is essential that there is cross-organizational and cross-provider access to EHRs to ensure patient continuity of care, system efficiency, and high quality care.</p

    Hemodynamic effects of lung recruitment maneuvers in acute respiratory distress syndrome

    Get PDF
    Background: Clinical trials have, so far, failed to establish clear beneficial outcomes of recruitment maneuvers (RMs) on patient mortality in acute respiratory distress syndrome (ARDS), and the effects of RMs on the cardiovascular system remain poorly understood. Methods: A computational model with highly integrated pulmonary and cardiovascular systems was configured to replicate static and dynamic cardio-pulmonary data from clinical trials. Recruitment maneuvers (RMs) were executed in 23 individual in-silico patients with varying levels of ARDS severity and initial cardiac output. Multiple clinical variables were recorded and analyzed, including arterial oxygenation, cardiac output, peripheral oxygen delivery and alveolar strain. Results: The maximal recruitment strategy (MRS) maneuver, which implements gradual increments of positive end expiratory pressure (PEEP) followed by PEEP titration, produced improvements in PF ratio, carbon dioxide elimination and dynamic strain in all 23 in-silico patients considered. Reduced cardiac output in the moderate and mild in silico ARDS patients produced significant drops in oxygen delivery during the RM (average decrease of 423 ml min-1 and 526 ml min-1, respectively). In the in-silico patients with severe ARDS, however, significantly improved gas-exchange led to an average increase of 89 ml min-1 in oxygen delivery during the RM, despite a simultaneous fall in cardiac output of more than 3 l min-1 on average. Post RM increases in oxygen delivery were observed only for the in silico patients with severe ARDS. In patients with high baseline cardiac outputs (>6.5 l min-1), oxygen delivery never fell below 700 ml min-1. Conclusions: Our results support the hypothesis that patients with severe ARDS and significant numbers of alveolar units available for recruitment may benefit more from RMs. Our results also indicate that a higher than normal initial cardiac output may provide protection against the potentially negative effects of high intrathoracic pressures associated with RMs on cardiac function. Results from in silico patients with mild or moderate ARDS suggest that the detrimental effects of RMs on cardiac output can potentially outweigh the positive effects of alveolar recruitment on oxygenation, resulting in overall reductions in tissue oxygen delivery
    • …
    corecore