16 research outputs found

    How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure

    Get PDF
    ‘Oxygen-tolerant’ [NiFe]-hydrogenases can catalyze H(2) oxidation under aerobic conditions, avoiding oxygenation and destruction of the active site. In one mechanism accounting for this special property, membrane-bound [NiFe]-hydrogenases accommodate a pool of electrons that allows an O(2) molecule attacking the active site to be converted rapidly to harmless water. An important advantage may stem from having a dimeric or higher-order quaternary structure in which the electron-transfer relay chain of one partner is electronically coupled to that in the other. Hydrogenase-1 from E. coli has a dimeric structure in which the distal [4Fe-4S] clusters in each monomer are located approximately 12 Å apart, a distance conducive to fast electron tunneling. Such an arrangement can ensure that electrons from H(2) oxidation released at the active site of one partner are immediately transferred to its counterpart when an O(2) molecule attacks. This paper addresses the role of long-range, inter-domain electron transfer in the mechanism of O(2)-tolerance by comparing the properties of monomeric and dimeric forms of Hydrogenase-1. The results reveal a further interesting advantage that quaternary structure affords to proteins

    Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: the Ni-SIr state and its light sensitivity

    Get PDF
    The [NiFe] hydrogenase from the sulphate-reducing bacterium Desulfovibrio vulgaris Miyazaki F is reversibly inhibited in the presence of molecular oxygen. A key intermediate in the reactivation process, Ni-SIr, provides the link between fully oxidized (Ni-A, Ni-B) and active (Ni-SIa, Ni-C and Ni-R) forms of hydrogenase. In this work Ni-SIr was found to be light-sensitive (T ≀ 110 K), similar to the active Ni-C and the CO-inhibited states. Transition to the final photoproduct state (Ni-SL) was shown to involve an additional transient light-induced state (Ni-SI1961). Rapid scan kinetic infrared measurements provided activation energies for the transition from Ni-SL to Ni-SIr in protonated as well as in deuterated samples. The inhibitor CO was found not to react with the active site of the Ni-SL state. The wavelength dependence of the Ni-SIr photoconversion was examined in the range between 410 and 680 nm. Light-induced effects were associated with a nickel-centred electronic transition, possibly involving a change in the spin state of nickel (Ni2+). In addition, at T ≀ 40 K the CN− stretching vibrations of Ni-SL were found to be dependent on the colour of the monochromatic light used to irradiate the species, suggesting a change in the interaction of the hydrogen-bonding network of the surrounding amino acids. A possible mechanism for the photochemical process, involving displacement of the oxygen-based ligand, is discussed

    Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: insights into the puzzling difference between unready and ready oxidized inactive states.

    No full text
    Dynamic electrochemical studies, incorporating catalytic voltammetry and detailed potential-step manipulations, provide compelling evidence that the oxidized inactive state of [NiFe]-hydrogenases termed Unready (or Ni-A) contains a product of partial reduction of O(2) that is trapped in the active site

    The mechanism of activation of a [NiFe]-hydrogenase by electrons, hydrogen, and carbon monoxide.

    No full text
    Activation of the oxidized inactive state (termed Unready or Ni(u)) of the [NiFe]-hydrogenase from Allochromatium vinosum requires removal of an unidentified oxidizing entity [O], produced by partial reduction of O(2). Dynamic electrochemical kinetic studies, subjecting enzyme molecules on an electrode to sequences of potential steps and gas injections, establish the order of events in an otherwise complex sequence of reactions that involves more than one intermediate retaining [O] or its redox equivalent; fast and reversible electron transfer precedes the rate-determining step which is followed by a reaction with H(2), or the inhibitor CO, that renders the reductive activation process irreversible

    Hydrogenase on an electrode: a remarkable heterogeneous catalyst

    No full text
    Hydrogenases - enzymes interconverting hydrogen and water - display intriguing chemistry and offer important possibilities for future energy technologies. The so-called [NiFe]-hydrogenases contain a binuclear NiFe catalytic center coordinated by thiolates, CO and CN-. Hydrogenases pose significant experimental challenges due to O2-sensitivity, high activity, and the presence of many different active and inactive states. However, the enzyme can be studied with considerable precision using a minuscule quantity adsorbed on an electrode. In this form it is a heterogeneous catalyst rather than the solution system studied by enzymologists: in particular, exploitation of the 'potential dimension' enables complex reactions to be analysed and deconvoluted

    Enzyme electrokinetics: electrochemical studies of the anaerobic interconversions between active and inactive states of Allochromatium vinosum [NiFe]-hydrogenase.

    No full text
    The cycling between active and inactive states of the catalytic center of [NiFe]-hydrogenase from Allochromatium vinosum has been investigated by dynamic electrochemical techniques. Adsorbed on a rotating disk pyrolytic graphite "edge" electrode, the enzyme is highly electroactive: this allows precise manipulations of the complex redox chemistry and facilitates quantitative measurements of the interconversions between active catalytic states and the inactive oxidized form Ni(r) (also called Ni-B or "ready") as functions of pH, H(2) partial pressure, temperature, and electrode potential. Cyclic voltammograms for catalytic H(2) oxidation (current is directly related to turnover rate) are highly asymmetric (except at pH > 8 and high temperature) due to inactivation being much slower than activation. Controlled potential-step experiments show that the rate of oxidative inactivation increases at high pH but is independent of potential, whereas the rate of reductive activation increases as the potential becomes more negative. Indeed, at 45 degrees C, activation takes just a few seconds at -288 mV. The cyclic asymmetry arises because interconversion is a two-stage reaction, as expected if the reduced inactive Ni(r)-S state is an intermediate. The rate of inactivation depends on a chemical process (rearrangement and uptake of a ligand) that is independent of potential, but sensitive to pH, while activation is driven by an electron-transfer process, Ni(III) to Ni(II), that responds directly to the driving force. The potentials at which fast activation occurs under different conditions have been analyzed to yield the potential-pH dependence and the corresponding entropies and enthalpies. The reduced (active) enzyme shows a pK of 7.6; thus, when a one-electron process is assumed, reductive activation at pH < 7 involves a net uptake of one proton (or release of one hydroxide), whereas, at pH > 8, there is no net exchange of protons with solvent. Activation is favored by a large positive entropy, consistent with the release of a ligand and/or relaxation of the structure around the active site

    O2-independent formation of the inactive states of NiFe hydrogenase

    No full text
    International audienceWe studied the mechanism of aerobic inactivation of Desulfovibrio fructosovorans nickel-iron (NiFe) hydrogenase by quantitatively examining the results of electrochemistry, EPR and FTIR experiments. They suggest that, contrary to the commonly accepted mechanism, the attacking O2 is not incorporated as an active site ligand but, rather, acts as an electron acceptor. Our findings offer new ways toward the understanding of O2 inactivation and O2 tolerance in NiFe hydrogenases
    corecore