59 research outputs found

    The Transcription Factor Cux1 Regulates Dendritic Morphology of Cortical Pyramidal Neurons

    Get PDF
    In the murine cerebral cortex, mammalian homologues of the Cux family transcription factors, Cux1 and Cux2, have been identified as restricted molecular markers for the upper layer (II-IV) pyramidal neurons. However, their functions in cortical development are largely unknown. Here we report that increasing the intracellular level of Cux1, but not Cux2, reduced the dendritic complexity of cultured cortical pyramidal neurons. Consistently, reducing the expression of Cux1 promoted the dendritic arborization in these pyramidal neurons. This effect required the existence of the DNA-binding domains, hence the transcriptional passive repression activity of Cux1. Analysis of downstream signals suggested that Cux1 regulates dendrite development primarily through suppressing the expression of the cyclin-dependent kinase inhibitor p27Kip1, and RhoA may mediate the regulation of dendritic complexity by Cux1 and p27. Thus, Cux1 functions as a negative regulator of dendritic complexity for cortical pyramidal neurons

    Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: Comparison of the CGH profiles between cancer cell lines and primary cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell lines are commonly used in various kinds of biomedical research in the world. However, it remains uncertain whether genomic alterations existing in primary tumor tissues are represented in cell lines and whether cell lines carry cell line-specific genomic alterations. This study was performed to answer these questions.</p> <p>Methods</p> <p>Array-based comparative genomic hybridization (CGH) was employed with 4030 bacterial artificial chromosomes (BACs) that cover the genome at 1.0 megabase resolution to analyze DNA copy number aberrations (DCNAs) in 35 primary breast tumors and 24 breast cancer cell lines. DCNAs were compared between these two groups. A tissue microdissection technique was applied to primary tumor tissues to reduce the contamination of samples by normal tissue components.</p> <p>Results</p> <p>The average number of BAC clones with DCNAs was 1832 (45.3% of spotted clones) and 971 (24.9%) for cell lines and primary tumor tissues, respectively. Gains of 1q and 8q and losses of 8p, 11q, 16q and 17p were detected in >50% of primary cancer tissues. These aberrations were also frequently detected in cell lines. In addition to these alterations, the cell lines showed recurrent genomic alterations including gains of 5p14-15, 20q11 and 20q13 and losses of 4p13-p16, 18q12, 18q21, Xq21.1 and Xq26-q28 that were barely detected in tumor tissue specimens. These are considered to be cell line-specific DCNAs. The frequency of the HER2 amplification was high in both cell lines and tumor tissues, but it was statistically different between cell lines and primary tumors (P = 0.012); 41.3 ± 29.9% for the cell lines and 15.9 ± 18.6% for the tissue specimens.</p> <p>Conclusions</p> <p>Established cell lines carry cell lines-specific DCNAs together with recurrent aberrations detected in primary tumor tissues. It must therefore be emphasized that cell lines do not always represent the genotypes of parental tumor tissues.</p

    Neurodevelopment Genes in Lampreys Reveal Trends for Forebrain Evolution in Craniates

    Get PDF
    The forebrain is the brain region which has undergone the most dramatic changes through vertebrate evolution. Analyses conducted in lampreys are essential to gain insight into the broad ancestral characteristics of the forebrain at the dawn of vertebrates, and to understand the molecular basis for the diversifications that have taken place in cyclostomes and gnathostomes following their splitting. Here, we report the embryonic expression patterns of 43 lamprey genes, coding for transcription factors or signaling molecules known to be involved in cell proliferation, stemcellness, neurogenesis, patterning and regionalization in the developing forebrain. Systematic expression patterns comparisons with model organisms highlight conservations likely to reflect shared features present in the vertebrate ancestors. They also point to changes in signaling systems –pathways which control the growth and patterning of the neuroepithelium-, which may have been crucial in the evolution of forebrain anatomy at the origin of vertebrates

    Activation of the Canonical Wnt/β-Catenin Pathway in ATF3-Induced Mammary Tumors

    Get PDF
    Female transgenic mice that constitutively overexpress the transcription factor ATF3 in the basal epithelium of the mammary gland develop mammary carcinomas with high frequency, but only if allowed to mate and raise pups early in life. This transgenic mouse model system reproduces some features of human breast cancer in that about 20% of human breast tumor specimens exhibit overexpression of ATF3 in the tumor cells. The ATF3-induced mouse tumors are phenotypically similar to mammary tumors induced by overexpression of activating Wnt/β-catenin pathway genes. We now show that the Wnt/β-catenin pathway is indeed activated in ATF3-induced tumors. β-catenin is transcriptionally up-regulated in the tumors, and high levels of nuclear β-catenin are seen in tumor cells. A reporter gene for Wnt/β-catenin pathway activity, TOPGAL, is up-regulated in the tumors and several downstream targets of Wnt signaling, including Ccnd1, Jun, Axin2 and Dkk4, are also expressed at higher levels in ATF3-induced tumors compared to mammary glands of transgenic females. Several positive-acting ligands for this pathway, including Wnt3, Wnt3a, Wnt7b, and Wnt5a, are significantly overexpressed in tumor tissue, and mRNA for Wnt3 is about 5-fold more abundant in transgenic mammary tissue than in non-transgenic mammary tissue. Two known transcriptional targets of ATF3, Snai1 and Snai2, are also overexpressed in the tumors, and Snail and Slug proteins are found to be located primarily in the nuclei of tumor cells. In vitro knockdown of Atf3 expression results in significant decreases in expression of Wnt7b, Tcf7, Snai2 and Jun, suggesting that these genes may be direct transcriptional targets of ATF3 protein. By chromatin immunoprecipitation analysis, both ATF3 and JUN proteins appear to bind to a particular subclass of AP-1 sites upstream of the transcriptional start sites of each of these genes

    Neurod1 Suppresses Hair Cell Differentiation in Ear Ganglia and Regulates Hair Cell Subtype Development in the Cochlea

    Get PDF
    Background: At least five bHLH genes regulate cell fate determination and differentiation of sensory neurons, hair cells and supporting cells in the mammalian inner ear. Cross-regulation of Atoh1 and Neurog1 results in hair cell changes in Neurog1 null mice although the nature and mechanism of the cross-regulation has not yet been determined. Neurod1, regulated by both Neurog1 and Atoh1, could be the mediator of this cross-regulation. Methodology/Principal Findings: We used Tg(Pax2-Cre) to conditionally delete Neurod1 in the inner ear. Our data demonstrate for the first time that the absence of Neurod1 results in formation of hair cells within the inner ear sensory ganglia. Three cell types, neural crest derived Schwann cells and mesenchyme derived fibroblasts (neither expresses Neurod1) and inner ear derived neurons (which express Neurod1) constitute inner ear ganglia. The most parsimonious explanation is that Neurod1 suppresses the alternative fate of sensory neurons to develop as hair cells. In the absence of Neurod1, Atoh1 is expressed and differentiates cells within the ganglion into hair cells. We followed up on this effect in ganglia by demonstrating that Neurod1 also regulates differentiation of subtypes of hair cells in the organ of Corti. We show that in Neurod1 conditional null mice there is a premature expression of several genes in the apex of the developing cochlea and outer hair cells are transformed into inner hair cells. Conclusions/Significance: Our data suggest that the long noted cross-regulation of Atoh1 expression by Neurog1 migh

    Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life

    Full text link
    corecore