55 research outputs found

    Motion in classical field theories and the foundations of the self-force problem

    Full text link
    This article serves as a pedagogical introduction to the problem of motion in classical field theories. The primary focus is on self-interaction: How does an object's own field affect its motion? General laws governing the self-force and self-torque are derived using simple, non-perturbative arguments. The relevant concepts are developed gradually by considering motion in a series of increasingly complicated theories. Newtonian gravity is discussed first, then Klein-Gordon theory, electromagnetism, and finally general relativity. Linear and angular momenta as well as centers of mass are defined in each of these cases. Multipole expansions for the force and torque are then derived to all orders for arbitrarily self-interacting extended objects. These expansions are found to be structurally identical to the laws of motion satisfied by extended test bodies, except that all relevant fields are replaced by effective versions which exclude the self-fields in a particular sense. Regularization methods traditionally associated with self-interacting point particles arise as straightforward perturbative limits of these (more fundamental) results. Additionally, generic mechanisms are discussed which dynamically shift --- i.e., renormalize --- the apparent multipole moments associated with self-interacting extended bodies. Although this is primarily a synthesis of earlier work, several new results and interpretations are included as well.Comment: 68 pages, 1 figur

    Radiation reaction and energy-momentum conservation

    Full text link
    We discuss subtle points of the momentum balance for radiating particles in flat and curved space-time. An instantaneous balance is obscured by the presence of the Schott term which is a finite part of the bound field momentum. To establish the balance one has to take into account the initial and final conditions for acceleration, or to apply averaging. In curved space-time an additional contribution arises from the tidal deformation of the bound field. This force is shown to be the finite remnant from the mass renormalization and it is different both form the radiation recoil force and the Schott force. For radiation of non-gravitational nature from point particles in curved space-time the reaction force can be computed substituting the retarded field directly to the equations of motion. Similar procedure is applicable to gravitational radiation in vacuum space-time, but fails in the non-vacuum case. The existence of the gravitational quasilocal reaction force in this general case seems implausible, though it still exists in the non-relativistic approximation. We also explain the putative antidamping effect for gravitational radiation under non-geodesic motion and derive the non-relativistic gravitational quadrupole Schott term. Radiation reaction in curved space of dimension other than four is also discussedComment: Lecture given at the C.N.R.S. School "Mass and Motion in General Relativity", Orleans, France, 200

    Docetaxel plus cisplatin is effective for patients with metastatic breast cancer resistant to previous anthracycline treatment: a phase II clinical trial

    Get PDF
    BACKGROUND: Patients with metastatic breast cancer (MBC) are frequently exposed to high cumulative doses of anthracyclines and are at risk of resistance and cardiotoxicity. This phase II trial evaluated the efficacy and toxicity of docetaxel plus cisplatin, as salvage chemotherapy in patients with MBC resistant to prior anthracyclines. METHODS: Patients with MBC that had progressed after at least one prior chemotherapy regimen containing anthracyclines received docetaxel 75 mg/m(2 )followed by cisplatin 60 mg/m(2 )every 3 weeks for a maximum of 6 cycles or until disease progression. RESULTS: Between Jan 2000 and May 2002, 24 patients with tumors primary resistant and 15 with secondary resistant disease were accrued. All 39 patients were evaluable for safety and 36 for efficacy. The objective response rate was 31% (95% CI, 16–45%) with 3 complete responses. The median time to disease progression was 7 months, and the median overall survival was 23 months (median follow-up of 41 months). Neutropenia was the most frequently observed severe hematologic toxicity (39% of patients), whereas asthenia and nausea were the most common non-hematologic toxicities. No treatment-related death was observed. CONCLUSION: In conclusion, we found docetaxel plus cisplatin to be an active and safe chemotherapy regimen for patients with MBC resistant to anthracyclines

    Self-force: Computational Strategies

    Full text link
    Building on substantial foundational progress in understanding the effect of a small body's self-field on its own motion, the past 15 years has seen the emergence of several strategies for explicitly computing self-field corrections to the equations of motion of a small, point-like charge. These approaches broadly fall into three categories: (i) mode-sum regularization, (ii) effective source approaches and (iii) worldline convolution methods. This paper reviews the various approaches and gives details of how each one is implemented in practice, highlighting some of the key features in each case.Comment: Synchronized with final published version. Review to appear in "Equations of Motion in Relativistic Gravity", published as part of the Springer "Fundamental Theories of Physics" series. D. Puetzfeld et al. (eds.), Equations of Motion in Relativistic Gravity, Fundamental Theories of Physics 179, Springer, 201

    Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Full text link
    • …
    corecore