20 research outputs found

    Early Elevation of Matrix Metalloproteinase-8 and -9 in Pediatric ARDS Is Associated with an Increased Risk of Prolonged Mechanical Ventilation

    Get PDF
    BACKGROUND: Matrix metalloproteinases (MMP) -8 and -9 may play key roles in the modulation of neutrophilic lung inflammation seen in pediatric Acute Respiratory Distress Syndrome (ARDS). We aimed to perform a comprehensive analysis of MMP-8 and MMP-9 activity in tracheal aspirates of pediatric ARDS patients compared with non-ARDS controls, testing whether increased MMP-8 and -9 activities were associated with clinical outcomes. METHODS: Tracheal aspirates were collected from 33 pediatric ARDS patients and 21 non-ARDS controls at 48 hours of intubation, and serially for those who remained intubated greater than five days. MMPs, tissue inhibitor of metalloproteinases (TIMPs), human neutrophil elastase (HNE) and myeloperoxidase (MPO) activity were measured by ELISA, and correlated with clinical indicators of disease severity such as PRISM (Pediatric Risk of Mortality) scores, oxygen index (OI), multi-organ system failure (MOSF) and clinical outcome measures including length of intubation, ventilator-free days (VFDs) and mortality in the Pediatric Intensive Care Unit (PICU). RESULTS: Active MMP-9 was elevated early in pediatric ARDS subjects compared to non-ARDS controls. Higher MMP-8 and active MMP-9 levels at 48 hours correlated with a longer course of mechanical ventilation (r = 0.41, p = 0.018 and r = 0.75, p<0.001; respectively) and fewer number of VFDs (r = -0.43, p = 0.013 and r = -0.76, p<0.001; respectively), independent of age, gender and severity of illness. Patients with the highest number of ventilator days had the highest levels of active MMP-9. MMP-9 and to a lesser extent MMP-8 activities in tracheal aspirates from ARDS subjects were sensitive to blockade by small molecule inhibitors. CONCLUSIONS: Higher MMP-8 and active MMP-9 levels at 48 hours of disease onset are associated with a longer duration of mechanical ventilation and fewer ventilator-free days among pediatric patients with ARDS. Together, these results identify early biomarkers predictive of disease course and potential therapeutic targets for this life threatening disease

    Bronchoalveolar lavage fluid peptidomics suggests a possible matrix metalloproteinase-3 role in bronchopulmonary dysplasia

    No full text
    Bronchoalveolar lavage fluid (BALF) is an important diagnostic source to investigate molecular changes occurring in lung disorders. The objective of this study was to assess and compare the peptidomic profiles of BALF from premature neonates with and without bronchopulmonary dysplasia (BPD). Samples were obtained on the 3rd day of life from 34 neonates with gestational age a parts per thousand currency sign32 weeks. Two pools of samples from patients with and without BPD were analyzed by high performance liquid chromatography. Several differentially expressed peptides were collected and sequenced. Moreover, samples from single donors were analyzed by liquid chromatography-electrospray ionization mass spectrometry to define the molecular mass values of various peptides and to quantify their expression. Levels of some matrix metalloproteinases and their tissue inhibitors were also determined in single samples. Neonates of the BPD group (N = 16) showed significantly lower mean gestational age and birth weight with respect to the no-BPD group (N = 18; P < 0.0001). Levels of six peptides were significantly higher in BPD patients (P < 0.05). Two of them were identified as the albumin fragments 1-21 (2,428 Da) and 399-406 (956 Da). Levels of matrix metalloproteinase-3 (MMP-3) enzyme probably involved in albumin fragment generation were also significantly higher in the BPD group compared to the no-BPD group (P < 0.05), whereas the levels of tissue inhibitor of metalloproteinases-1 were significantly lower (P < 0.05). Levels of albumin fragments and MMP-3 showed a significant correlation (P < 0.05). This study shows that proteomic techniques can be applied to investigate the involvement of proteolytic enzymes on the airways of mechanically ventilated premature infants

    Lidocaine permeation from a lidocaine NaCMC/gel microgel formulation in microneedle-pierced skin: vertical (depth averaged) and horizontal permeation profiles

    No full text
    The final publication is available at Springer via http://dx.doi.org/10.1007/s13346-015-0229-zCommon local anaesthetics such as lidocaine are administered by the hypodermic parenteral route but it causes pain or anxiety to patients. Alternatively, an ointment formulation may be applied which involves a slow drug diffusion process. In addressing these two issues, this paper aims to understand the significance of the ‘poke and patch’ microneedle (MN) treatment on skin in conjunction to the lidocaine permeation, and in particular, the vertical (depth averaged) and horizontal (e.g. lateral) permeation profiles of the drug in the skin. The instantaneous pharmacokinetics of lidocaine in skin was determined by a skin denaturation technique coupled with Franz diffusion cell measurements of the drug pharmacokinetics. All pharmacokinetic profiles were performed periodically on porcine skin. Three MN insertion forces of 3.9, 7.9 and 15.7 N were applied on the MN to pierce the skin. For the smaller force (3.9 N), post MN-treated skin seems to provide an ‘optimum’ percutaneous delivery rate. A 10.2-fold increase in lidocaine permeation was observed for a MN insertion force of 3.9 N at 0.25 h and similarly, a 5.4-fold increase in permeation occurred at 0.5 h compared to passive diffusional delivery. It is shown that lidocaine permeates horizontally beyond the area of the MN-treated skin for the smaller MN insertion forces, namely, 3.9 and 7.9 N from 0.25 to 0.75 h, respectively. The lateral diffusion/permeation of lidocaine for larger MN-treated force (namely, 15.7 N in this work) seems to be insignificant at all recorded timings. The MN insertion force of 15.7 N resulted in lidocaine concentrations slightly greater than control (passive diffusion) but significantly less than 3.9 and 7.9 N impact force treatments on skin. We believe this likelihood is due to the skin compression effect that inhibits diffusion until the skin had time to relax at which point lidocaine levels increase
    corecore