51 research outputs found

    Impact of Birth Weight and Early Infant Weight Gain on Insulin Resistance and Associated Cardiovascular Risk Factors in Adolescence

    Get PDF
    BACKGROUND: Low birth weight followed by accelerated weight gain during early childhood has been associated with adverse metabolic and cardiovascular outcomes later in life. The aim of this study was to examine the impact of early infant weight gain on glucose metabolism and cardiovascular risk factors in adolescence and to study if the effect differed between adolescents born small for gestational age (SGA) vs. appropriate for gestational age (AGA). METHODOLOGY/PRINCIPAL FINDINGS: Data from 30 SGA and 57 AGA healthy young Danish adolescents were analysed. They had a mean age of 17.6 years and all were born at term. Data on early infant weight gain from birth to three months as well as from birth to one year were available in the majority of subjects. In adolescence, glucose metabolism was assessed by a simplified intravenous glucose tolerance test and body composition was assessed by dual-energy X-ray absorptiometry. Blood pressures as well as plasma concentrations of triglycerides and cholesterol were measured. Early infant weight gain from birth to three months was positively associated with the fasting insulin concentration, HOMA-IR, basal lipid levels and systolic blood pressure at 17 years. There was a differential effect of postnatal weight gain on HOMA-IR in AGA and SGA participants (P for interaction = 0.03). No significant associations were seen between postnatal weight gain and body composition or parameters of glucose metabolism assessed by the simplified intravenous glucose tolerance test. In subgroup analysis, all associations with early infant weight gain were absent in the AGA group, but the associations with basal insulin and HOMA-IR were still present in the SGA group. CONCLUSION: This study suggests that accelerated growth during the first three months of life may confer an increased risk of later metabolic disturbances--particularly of glucose metabolism--in individuals born SGA

    A high resolution atlas of gene expression in the domestic sheep (Ovis aries)

    Get PDF
    Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages
    corecore