36 research outputs found

    Energy Metabolism in H460 Lung Cancer Cells: Effects of Histone Deacetylase Inhibitors

    Get PDF
    BACKGROUND: Tumor cells are characterized by accelerated growth usually accompanied by up-regulated pathways that ultimately increase the rate of ATP production. These cells can suffer metabolic reprogramming, resulting in distinct bioenergetic phenotypes, generally enhancing glycolysis channeled to lactate production. In the present work we showed metabolic reprogramming by means of inhibitors of histone deacetylase (HDACis), sodium butyrate and trichostatin. This treatment was able to shift energy metabolism by activating mitochondrial systems such as the respiratory chain and oxidative phosphorylation that were largely repressed in the untreated controls. METHODOLOGY/PRINCIPAL FINDINGS: Various cellular and biochemical parameters were evaluated in lung cancer H460 cells treated with the histone deacetylase inhibitors (HDACis), sodium butyrate (NaB) and trichostatin A (TSA). NaB and TSA reduced glycolytic flux, assayed by lactate release by H460 cells in a concentration dependent manner. NaB inhibited the expression of glucose transporter type 1 (GLUT 1), but substantially increased mitochondria bound hexokinase (HK) activity. NaB induced increase in HK activity was associated to isoform HK I and was accompanied by 1.5 fold increase in HK I mRNA expression and cognate protein biosynthesis. Lactate dehydrogenase (LDH) and pyruvate kinase (PYK) activities were unchanged by HDACis suggesting that the increase in the HK activity was not coupled to glycolytic flux. High resolution respirometry of H460 cells revealed NaB-dependent increased rates of oxygen consumption coupled to ATP synthesis. Metabolomic analysis showed that NaB altered the glycolytic metabolite profile of intact H460 cells. Concomitantly we detected an activation of the pentose phosphate pathway (PPP). The high O(2) consumption in NaB-treated cells was shown to be unrelated to mitochondrial biogenesis since citrate synthase (CS) activity and the amount of mitochondrial DNA remained unchanged. CONCLUSION: NaB and TSA induced an increase in mitochondrial function and oxidative metabolism in H460 lung tumor cells concomitant with a less proliferative cellular phenotype

    Regulation of mitochondrial morphogenesis by annexin a6.

    Get PDF
    Mitochondrial homeostasis is critical in meeting cellular energy demands, shaping calcium signals and determining susceptibility to apoptosis. Here we report a role for anxA6 in the regulation of mitochondrial morphogenesis, and show that in cells lacking anxA6 mitochondria are fragmented, respiration is impaired and mitochondrial membrane potential is reduced. In fibroblasts from AnxA6(-/-) mice, mitochondrial Ca(2+) uptake is reduced and cytosolic Ca(2+) transients are elevated. These observations led us to investigate possible interactions between anxA6 and proteins with roles in mitochondrial fusion and fission. We found that anxA6 associates with Drp1 and that mitochondrial fragmentation in AnxA6(-/-) fibroblasts was prevented by the Drp1 inhibitor mdivi-1. In normal cells elevation of intracellular Ca(2+) disrupted the interaction between anxA6 and Drp1, displacing anxA6 to the plasma membrane and promoting mitochondrial fission. Our results suggest that anxA6 inhibits Drp1 activity, and that Ca(2+)-binding to anxA6 relieves this inhibition to permit Drp1-mediated mitochondrial fission

    A qualitative exploration of workarounds related to the implementation of national electronic health records in early adopter mental health hospitals

    Get PDF
    AIMS: To investigate the perceptions and reported practices of mental health hospital staff using national hospital electronic health records (EHRs) in order to inform future implementations, particularly in acute mental health settings. METHODS: Thematic analysis of interviews with a wide range of clinical, information technology (IT), managerial and other staff at two early adopter mental health National Health Service (NHS) hospitals in London, UK, implementing national EHRs. RESULTS: We analysed 33 interviews. We first sought out examples of workarounds, such as delayed data entry, entering data in wrong places and individuals using the EHR while logged in as a colleague, then identified possible reasons for the reported workarounds. Our analysis identified four main categories of factors contributing to workarounds (i.e., operational, cultural, organisational and technical). Operational factors included poor system integration with existing workflows and the system not meeting users' perceived needs. Cultural factors involved users' competence with IT and resistance to change. Organisational factors referred to insufficient organisational resources and training, while technical factors included inadequate local technical infrastructure. Many of these factors, such as integrating the EHR system with day-to-day operational processes, staff training and adequate local IT infrastructure, were likely to apply to system implementations in various settings, but we also identified factors that related particularly to implementing EHRs in mental health hospitals, for example: EHR system incompatibility with IT systems used by mental health-related sectors, notably social services; the EHR system lacking specific, mental health functionalities and options; and clinicians feeling unable to use computers while attending to distressed psychiatric patients. CONCLUSIONS: A better conceptual model of reasons for workarounds should help with designing, and supporting the implementation and adoption of, EHRs for use in hospital mental health settings
    corecore