93 research outputs found

    Nanostructured, Self-Assembling Peptide K5 Blocks TNF-α and PGE2 Production by Suppression of the AP-1/p38 Pathway

    Get PDF
    Nanostructured, self-assembling peptides hold promise for a variety of regenerative medical applications such as 3D cell culture systems, accelerated wound healing, and nerve repair. The aim of this study was to determine whether the self-assembling peptide K5 can be applied as a carrier of anti-inflammatory drugs. First, we examined whether the K5 self-assembling peptide itself can modulate various cellular inflammatory responses. We found that peptide K5 significantly suppressed the release of tumor-necrosis-factor- (TNF-) α and prostaglandin E2 (PGE2) from RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS). Similarly, there was inhibition of cyclooxygenase- (COX-) 2 mRNA expression assessed by real-time PCR, indicating that the inhibition is at the transcriptional level. In agreement with this finding, peptide K5 suppressed the translocation of the transcription factors activator protein (AP-1) and c-Jun and inhibited upstream inflammatory effectors including mitogen activated protein kinase (MAPK), p38, and mitogen-activated protein kinase kinase 3/6 (MKK 3/6). Whether this peptide exerts its effects via a transmembrane or cytoplasmic receptor is not clear. However, our data strongly suggest that the nanostructured, self-assembling peptide K5 may possess significant anti-inflammatory activity via suppression of the p38/AP-1 pathway

    COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer

    Get PDF
    Increased expression of COX-2 or VEGF-C has been correlated with progressive disease in certain cancers. Present study utilized several human breast cancer cell lines (MCF-7, T-47D, Hs578T and MDA-MB-231, varying in COX-2 expression) as well as 10 human breast cancer specimens to examine the roles of COX-2 and prostaglandin E (EP) receptors in VEGF-C expression or secretion, and the relationship of COX-2 or VEGF-C expression to lymphangiogenesis. We found a strong correlation between COX-2 mRNA expression and VEGF-C expression or secretion levels in breast cancer cell lines and VEGF-C expression in breast cancer tissues. Expression of LYVE-1, a selective marker for lymphatic endothelium, was also positively correlated with COX-2 or VEGF-C expression in breast cancer tissues. Inhibition of VEGF-C expression and secretion in the presence of COX-1/2 or COX-2 inhibitors or following downregulation of COX-2 with COX-2 siRNA established a stimulatory role COX-2 in VEGF-C synthesis by breast cancer cells. EP1 as well as EP4 receptor antagonists inhibited VEGF-C production indicating the roles of EP1 and EP4 in VEGF-C upregulation by endogenous PGE2. Finally, VEGF-C secretion by MDA-MB-231 cells was inhibited in the presence of kinase inhibitors for Her-2/neu, Src and p38 MAPK, indicating a requirement of these kinases for VEGF-C synthesis. These results, for the first time, demonstrate a regulatory role of COX-2 in VEGF-C synthesis (and thereby lymphangiogenesis) in human breast cancer, which is mediated at least in part by EP1/EP4 receptors

    YH29407 with anti-PD-1 ameliorates anti-tumor effects via increased T cell functionality and antigen presenting machinery in the tumor microenvironment

    Get PDF
    Among cancer cells, indoleamine 2, 3-dioxygenase1 (IDO1) activity has been implicated in improving the proliferation and growth of cancer cells and suppressing immune cell activity. IDO1 is also responsible for the catabolism of tryptophan to kynurenine. Depletion of tryptophan and an increase in kynurenine exert important immunosuppressive functions by activating regulatory T cells and suppressing CD8+ T and natural killer (NK) cells. In this study, we compared the anti-tumor effects of YH29407, the best-in-class IDO1 inhibitor with improved pharmacodynamics and pharmacokinetics, with first and second-generation IDO1 inhibitors (epacadostat and BMS-986205, respectively). YH29407 treatment alone and anti-PD-1 (aPD-1) combination treatment induced significant tumor suppression compared with competing drugs. In particular, combination treatment showed the best anti-tumor effects, with most tumors reduced and complete responses. Our observations suggest that improved anti-tumor effects were caused by an increase in T cell infiltration and activity after YH29407 treatment. Notably, an immune depletion assay confirmed that YH29407 is closely related to CD8+ T cells. RNA-seq results showed that treatment with YH29407 increased the expression of genes involved in T cell function and antigen presentation in tumors expressing ZAP70, LCK, NFATC2, B2M, and MYD88 genes. Our results suggest that an IDO1 inhibitor, YH29407, has enhanced PK/PD compared to previous IDO1 inhibitors by causing a change in the population of CD8+ T cells including infiltrating T cells into the tumor. Ultimately, YH29407 overcame the limitations of the competing drugs and displayed potential as an immunotherapy strategy in combination with aPD-1

    Multivariate association between brain function and eating disorders using sparse canonical correlation analysis.

    No full text
    Eating disorder is highly associated with obesity and it is related to brain dysfunction as well. Still, the functional substrates of the brain associated with behavioral traits of eating disorder are underexplored. Existing neuroimaging studies have explored the association between eating disorder and brain function without using all the information provided by the eating disorder related questionnaire but by adopting summary factors. Here, we aimed to investigate the multivariate association between brain function and eating disorder at fine-grained question-level information. Our study is a retrospective secondary analysis that re-analyzed resting-state functional magnetic resonance imaging of 284 participants from the enhanced Nathan Kline Institute-Rockland Sample database. Leveraging sparse canonical correlation analysis, we associated the functional connectivity of all brain regions and all questions in the eating disorder questionnaires. We found that executive- and inhibitory control-related frontoparietal networks showed positive associations with questions of restraint eating, while brain regions involved in the reward system showed negative associations. Notably, inhibitory control-related brain regions showed a positive association with the degree of obesity. Findings were well replicated in the independent validation dataset (n = 34). The results of this study might contribute to a better understanding of brain function with respect to eating disorder

    The effects of high-frequency repetitive transcranial magnetic stimulation on resting-state functional connectivity in obese adults

    No full text
    © 2019 John Wiley & Sons LtdAims: We conducted a 4-week randomized, sham-controlled, single-blind, parallel-group trial to examine the effect of repetitive transcranial magnetic stimulation (rTMS) delivered to the left dorsolateral prefrontal cortex (DLPFC) on functional brain connectivity and body weight in adults with obesity. Materials and methods: Of the 45 volunteers with obesity, aged between 18 and 70 years (body mass index [BMI] ≥25 kg/m2 according to the obesity criterion for an Asian population), 36 participants (54.1 ± 11.0 years, BMI 30.2 ± 3.5 kg/m2, 77.8% female) completed the 4 weeks of follow-up, undergoing two resting state fMRI scans (20 in the real stimulation group and 16 in the sham stimulation group). A total of eight sessions of high-frequency rTMS targeting the left DLPFC were provided over a period of 4 weeks (5-second trains with 25-second inter-train intervals, 10 Hz, 110% motor threshold; 2000 pulses over 20 minutes). Results: Participants in the real stimulation group showed significantly greater weight loss from baseline following the eight session of rTMS (−2.53 ± 2.41 kg vs 0.38 ± 1.13 kg, P < 0.01). For intrinsic brain connectivity comparisons, the between-ness centrality values within the right frontoparietal network tended to increase with rTMS, and a significant interaction effect was identified for time (pre vs post) × rTMS (real vs sham) in the right frontoparietal network (P = 0.031, FDR corrected). Conclusions: We observed that rTMS selectively increased resting state functional connectivity within the right frontoparietal network. Our findings suggest that high-frequency rTMS to the left DLPFC might strengthen the frontoparietal network that orchestrates top-down inhibitory control to reduce food intak
    corecore