11 research outputs found

    Identifying the Salinity Thresholds that Impact Greenhouse Gas Production in Subtropical Tidal Freshwater Marsh Soils

    No full text
    Increasing salinity due to sea level rise is an important factor influencing biogeochemical processes in estuarine wetlands, with the potential to impact greenhouse gas (GHG) emissions. However, there is little consensus regarding what salinity thresholds will significantly alter the production of GHGs or the physiochemical properties of wetland soils. This study used a fine-scale salinity gradient to determine the impact of seawater concentration on the potential production of CH4, CO2 and N2O and associated soil properties using bottle incubations of tidal freshwater marsh soils from the Min River estuary, SE China. Potential CH4 production was unaffected by salinities from 0 to 7.5‰, but declined significantly at 10‰ and above. Potential CO2 production was stimulated at intermediate salinities (5 to 7.5‰), but inhibited by salinities ≥15‰, while potential N2O production was unaffected by salinity. In contrast, soil dissolved organic carbon and NH4+-N generally increased with salinity. Overall, this research indicates salinities of ~10–15‰ represent an important tipping point for biogeochemical processes in wetlands. Above this threshold, carbon mineralization is reduced and may promote vertical soil accretion in brackish and salinity wetlands. Meanwhile, low-level saltwater intrusion may leave wetlands vulnerable to submergence due to accelerated soil organic carbon loss

    Microbial Community Functional Change during Vertebrate Carrion Decomposition

    Get PDF
    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlatesâ„¢ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition
    corecore