75 research outputs found

    Identification of a protein encoded in the EB-viral open reading frame BMRF2

    Get PDF
    Using monospecific rabbit sera against a peptide derived from a potential antigenic region of the Epstein-Barr viral amino acid sequence encoded in the open reading frame BMRF2 we could identify a protein-complex of 53/55 kDa in chemically induced B95-8, P3HR1 and Raji cell lines. This protein could be shown to be membrane-associated, as predicted by previous computer analysis of the secondary structure and hydrophilicity pattern, and may be a member of EBV-induced membrane proteins in lytically infected cells

    Release of PLGA–encapsulated dexamethasone from microsphere loaded porous surfaces

    Get PDF
    The aim of the present study was to investigate the morphology and function of a drug eluting metallic porous surface produced by the immobilization of poly lactide-co-glycolide microspheres bearing dexamethasone onto plasma electrolytically oxidized Ti–6Al–7Nb medical alloy. Spheres of 20 μm diameter were produced by an oil-in-water emulsion/solvent evaporation method and thermally immobilized onto titanium discs. The scanning electron microscopy investigations revealed that the size distribution and morphology of the attached spheres had not changed significantly. The drug release profiles following degradation in phosphate buffered saline for 1000 h showed that, upon immobilisation, the spheres maintained a sustained release, with a triphasic profile similar to the non-attached system. The only significant change was an increased release rate during the first 100 h. This difference was attributed to the effect of thermal attachment of the spheres to the surface

    Hydrogen ion dynamics and the Na+/H+ exchanger in cancer angiogenesis and antiangiogenesis

    Get PDF
    Tumour angiogenesis and cellular pH regulation, mainly represented by Na+/H+ antiporter exchange, have been heretofore considered unrelated subfields of cancer research. In this short review, the available experimental evidence relating these areas of modern cancer research is introduced. This perspective also helps to design a new approach that facilitates the opening and development of novel research lines oriented towards a rational incorporation of anticancer drugs into more selective and less toxic therapeutic protocols. The final aim of these efforts is to control cancer progression and dissemination through the control of tumour angiogenesis. Finally, different antiangiogenic drugs that can already be clinically used to this effect are briefly presented

    Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139) as well as the efficacy of combination chemotherapy in human melanoma xenografts.</p> <p>Methods</p> <p>Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP) followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy.</p> <p>Results</p> <p>The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50%) accompanied by a marked tumor re-growth delay (TRD, about 20 days). The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days.</p> <p>Conclusions</p> <p>These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells <it>in vivo </it>and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.</p

    Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells

    Get PDF
    Background: Control of stem cell behavior is a crucial aspect of developmental biology and regenerative medicine. While the functional role of electrophysiology in stem cell biology is poorly understood, it has become clear that endogenous ion flows represent a powerful set of signals by means of which cell proliferation, differentiation, and migration can be controlled in regeneration and embryonic morphogenesis. Methodology/Principal Findings: We examined the membrane potential (Vmem) changes exhibited by human mesenchymal stem cells (hMSCs) undergoing adipogenic (AD) and osteogenic (OS) differentiation, and uncovered a characteristic hyperpolarization of differentiated cells versus undifferentiated cells. Reversal of the progressive polarization via pharmacological modulation of transmembrane potential revealed that depolarization of hMSCs prevents differentiation. In contrast, treatment with hyperpolarizing reagents upregulated osteogenic markers. Conclusions/Significance: Taken together, these data suggest that the endogenous hyperpolarization is a functiona

    Old polymer learns new tracts

    No full text
    corecore