8 research outputs found

    Automated Reporter Quantification In Vivo: High-Throughput Screening Method for Reporter-Based Assays in Zebrafish

    Get PDF
    Reporter-based assays underlie many high-throughput screening (HTS) platforms, but most are limited to in vitro applications. Here, we report a simple whole-organism HTS method for quantifying changes in reporter intensity in individual zebrafish over time termed, Automated Reporter Quantification in vivo (ARQiv). ARQiv differs from current “high-content” (e.g., confocal imaging-based) whole-organism screening technologies by providing a purely quantitative data acquisition approach that affords marked improvements in throughput. ARQiv uses a fluorescence microplate reader with specific detection functionalities necessary for robust quantification of reporter signals in vivo. This approach is: 1) Rapid; achieving true HTS capacities (i.e., >50,000 units per day), 2) Reproducible; attaining HTS-compatible assay quality (i.e., Z'-factors of ≥0.5), and 3) Flexible; amenable to nearly any reporter-based assay in zebrafish embryos, larvae, or juveniles. ARQiv is used here to quantify changes in: 1) Cell number; loss and regeneration of two different fluorescently tagged cell types (pancreatic beta cells and rod photoreceptors), 2) Cell signaling; relative activity of a transgenic Notch-signaling reporter, and 3) Cell metabolism; accumulation of reactive oxygen species. In summary, ARQiv is a versatile and readily accessible approach facilitating evaluation of genetic and/or chemical manipulations in living zebrafish that complements current “high-content” whole-organism screening methods by providing a first-tier in vivo HTS drug discovery platform

    Do Fish Perceive Anaesthetics as Aversive?

    No full text
    <div><p>This study addresses a fundamental question in fish welfare: are the anaesthetics used for fish aversive? Despite years of routine general use of many agents, within both scientific research and aquaculture, there is a paucity of information regarding their tolerance and associated behavioural responses by fish. This study examined nine of the most commonly used fish anaesthetic agents, and performed preference tests using adult mixed sex zebrafish (<i>Danio rerio</i>), the most commonly held laboratory fish. Video tracking software quantified swimming behaviour related to aversion for each anaesthetic at 50% of its standard recommended dose compared with clean water in a flow-through chemotaxic choice chamber. Results suggest that several commonly used anaesthetics were aversive, including two of the most commonly recommended and used: MS222 (ethyl 3-aminobenzoate methanesulphate) and benzocaine. For ethical best practice, it is recommended that compounds that are aversive, even at low concentration, should no longer be used routinely for anaesthesia or indeed the first step of humane euthanasia of adult zebrafish. Two agents were found not to induce aversive behavioural responses: etomidate and 2,2,2 tribromoethanol. For the millions of adult zebrafish used in laboratories and breeding worldwide, etomidate appears best suited for future routine humane use.</p></div
    corecore