241 research outputs found

    Identification and characterization of an imidazolium by-product formed during the synthesis of 4-methylmethcathinone (mephedrone)

    Get PDF
    4-Methylmethcathinone (2-methylamino-1-(4-methylphenyl)propan-1-one, mephedrone) is a psychoactive substance that has been associated with recreational use worldwide. Analytical data related to mephedrone are abundantly available but the characterization of by-products obtained during organic synthesis remains to be explored. This study presents the identification of a 1,2,3,5-tetramethyl-4-(4-methylphenyl)-1H-imidazol-3-ium salt (TMMPI), which was formed during the synthesis of mephedrone. When diethyl ether was added to the crude reaction product, solid material precipitated from the solution. Analytical characterization of TMMPI employed a range of analytical techniques including chromatographic analysis in combination with various mass spectrometric detection methods, nuclear magnetic resonance spectroscopy, and crystal structure analysis. Additional confirmation was obtained from organic synthesis of the imidazolium by-product. When TMMPI was subjected to analysis by gas chromatography-mass spectrometry (GC-MS), isomerization and degradation into two distinct compounds were observed, which pointed towards thermal instability under GC conditions. A liquid chromatography-mass spectrometry (LC-MS) based investigation into a micro-scale synthesis of mephedrone and three additional analogues revealed that the corresponding TMMPI analogue was formed. Interestingly, storage of mephedrone freebase in a number of organic solvents also gave rise to TMMPI and it appeared that its formation during storage was significantly reduced in the absence of air. The present study aimed to support clandestine forensic investigations by employing analytical strategies that are applicable to manufacturing sites. The imidazolium salts will most likely be found amongst the waste products of any clandestine lab site under investigation rather than with the desired product

    Analytical characterization of N,N-diallyltryptamine (DALT) and 16 ring-substituted derivatives

    Get PDF
    Many N,N-dialkylated tryptamines show psychoactive properties in humans and the number of derivatives involved in multidisciplinary areas of research has grown over the last few decades. Whereas some derivatives form the basis of a range of medicinal products, others are predominantly encountered as recreational drugs, and in some cases, the areas of therapeutic and recreational use can overlap. In recent years, 5-methoxy-N,N-diallyltryptamine (5-MeO-DALT) has appeared as a new psychoactive substance (NPS) and ‘research chemical’ whereas 4-acetoxy-DALT and the ring-unsubstituted DALT have only been detected very recently. Strategies pursued in the authors’ laboratories included the preparation and biological evaluation of previously unreported N,N-diallyltryptamines (DALTs). This report describes the analytical characterization of seventeen DALTs. Fifteen DALTs were prepared by a microwave-accelerated Speeter and Anthony procedure following established procedures developed previously in the authors’ laboratories. In addition to DALT, the substances included in this study were 2-phenyl-, 4-acetoxy-, 4-hydroxy-, 4,5-ethylenedioxy-, 5-methyl-, 5-methoxy-, 5-methoxy-2-methyl-, 5-ethoxy-, 5-fluoro-, 5-fluoro-2-methyl-, 5-chloro-, 5-bromo-, 5,6-methylenedioxy-, 6-fluoro-, 7-methyl, and 7-ethyl-DALT, respectively. The DALTs were characterized by nuclear magnetic resonance spectroscopy (NMR), gas chromatography (GC) quadrupole and ion trap (EI/CI) mass spectrometry (MS), low and high mass accuracy MS/MS, ultraviolet diode array detection and GC solid-state infrared analysis, respectively. A comprehensive collection of spectral data was obtained that are provided to research communities who face the challenge of encountering newly emerging substances where analytical data are not available. These data are also relevant to researchers who might wish to explore the clinical and non-clinical uses of these substances

    Return of the lysergamides. Part V: Analytical and behavioural characterization of 1-butanoyl-d-lysergic acid diethylamide (1B-LSD)

    Get PDF
    The psychedelic properties of lysergic acid diethylamide (LSD) have captured the imagination of researchers for many years and its rediscovery as an important research tool is evidenced by its clinical use within neuroscientific and therapeutic settings. At the same time, a number of novel LSD analogs have recently emerged as recreational drugs, which makes it necessary to study their analytical and pharmacological properties. One of the most recent additions to this series of LSD analogs is 1-butanoyl-LSD (1B-LSD), a constitutional isomer of 1-propionyl-6-ethyl-6-nor-lysergic acid diethylamide (1P-ETH-LAD), another LSD analog that was described previously. This study presents a comprehensive analytical characterization of 1B-LSD employing nuclear magnetic resonance spectroscopy (NMR), low- and high-resolution mass spectrometry platforms, gas- and liquid chromatography (GC and LC), and GC-condensed phase and attenuated total reflection infrared spectroscopy analyses. Analytical differentiation of 1B-LSD from 1P-ETH-LAD was straightforward. LSD and other serotonergic hallucinogens induce the head-twitch response (HTR) in rats and mice, which is mediated by 5-HT2A receptor activation. HTR studies were conducted in C57BL/6J mice to assess whether 1B-LSD has LSD-like behavioral effects. 1B-LSD produced a dose-dependent increase in HTR counts, acting with ~14% (ED50 = 976.7 nmol/kg) of the potency of LSD (ED50 = 132.8 nmol/kg). This finding suggests that the behavioral effects of 1B-LSD are reminiscent of LSD and other serotonergic hallucinogens. The possibility exists that 1B-LSD serves as a pro-drug for LSD. Further investigations are warranted to confirm whether 1B-LSD produces LSD-like psychoactive effects in humans

    Analytical characterization and pharmacological evaluation of the new psychoactive substance 4-fluoromethylphenidate (4F-MPH) and differentiation between the (±)-threo- and (±)-erythro- diastereomers

    Get PDF
    Misuse of (±)-threo-methylphenidate (methyl-2-phenyl-2-(piperidin-2-yl)acetate; Ritalin®, MPH) has long been acknowledged, but the appearance of MPH analogs in the form of ‘research chemicals’ has only emerged in more recent years. 4-Fluoromethylphenidate (4F-MPH) is one of these recent examples and this study presents the identification and analytical characterization of two powdered 4F-MPH products that were obtained from an online vendor in 2015. Interestingly, the products appeared to have originated from two distinct batches given that one product consisted of (±)-threo-4F-MPH isomers whereas the second sample consisted of a mixture of (±)-threo and (±)-erythro 4F-MPH. Monoamine transporter studies using rat brain synaptosomes revealed that the biological activity of the 4F-MPH mixture resided with the (±)-threo- and not the (±)-erythro isomers based on higher potencies determined for blockage of dopamine uptake (IC50 4F-MPHmixture = 66 nM vs. IC50 (±)-threo = 61 nM vs. IC50 (±)-erythro = 8,528 nM) and norepinephrine uptake (IC50 4F-MPHmixture = 45 nM vs. (±)-threo = 31 nM vs. IC50 (±)-erythro = 3,779 nM). In comparison, MPH was three times less potent than (±)-threo-4F-MPH at the dopamine transporter (IC50 = 131 nM) and around 2.5-times less potent at the norepinephrine transporter (IC50 = 83 nM). Both substances were catecholamine selective with IC50 values of 8,805 nM and >10,000 nM for (±)-threo-4F-MPH and MPH at the serotonin transporter. These findings suggest that the psychostimulant properties of (±)-threo-4F-MPH might be more potent in humans than MPH

    General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology

    Full text link
    The estimation of parameters characterizing dynamical processes is central to science and technology. The estimation error changes with the number N of resources employed in the experiment (which could quantify, for instance, the number of probes or the probing energy). Typically, it scales as 1/N^(1/2). Quantum strategies may improve the precision, for noiseless processes, by an extra factor 1/N^(1/2). For noisy processes, it is not known in general if and when this improvement can be achieved. Here we propose a general framework for obtaining attainable and useful lower bounds for the ultimate limit of precision in noisy systems. We apply this bound to lossy optical interferometry and atomic spectroscopy in the presence of dephasing, showing that it captures the main features of the transition from the 1/N to the 1/N^(1/2) behaviour as N increases, independently of the initial state of the probes, and even with use of adaptive feedback.Comment: Published in Nature Physics. This is the revised submitted version. The supplementary material can be found at http://www.nature.com/nphys/journal/v7/n5/extref/nphys1958-s1.pd

    Syntheses and analytical characterizations of the research chemical 1-[1-(2-fluorophenyl)-2-phenylethyl]pyrrolidine (fluorolintane) and five of its isomers

    Get PDF
    A number of substances based on the 1,2-diarylethylamine template have been investigated for various potential clinical applications whereas others have been encountered as research chemicals sold for non-medical use. Some of these substances have transpired to function as NMDA receptor antagonists that elicit dissociative effects in people who use these substances recreationally. 1-[1-(2-Fluorophenyl)-2-phenylethyl]pyrrolidine (fluorolintane, 2-F-DPPy) has recently appeared as a research chemical, which users report has dissociative effects. One common difficulty encountered by stakeholders confronting the appearance of new psychoactive substances is the presence of positional isomers. In the case of fluorolintane, the presence of the fluorine substituent on either the phenyl and benzyl moieties of the 1,2-diarylethylamine structure results in a total number of six possible racemic isomers, namely 2-F-, 3-F-, and 4-F-DPPy (phenyl ring substituents) and 2’’-F-, 3’’-F-, and 4’’-F-DPPy (benzyl ring substituents). The present study reports the chemical syntheses and comprehensive analytical characterizations of the two sets of three positional isomers. These studies included various low- and high-resolution mass spectrometry platforms, gas- and liquid chromatography (GC and LC), nuclear magnetic resonance spectroscopy (NMR) and GC-condensed phase and attenuated total reflection infrared spectroscopy analyses. The differentiation between each set of three isomers was possible under a variety of experimental conditions including GC chemical ionization triple quadrupole tandem mass spectrometric analysis of the [M + H – HF]+ species. The latter MS method was particularly helpful as it revealed distinct formation of product ions for each of the six investigated substances

    Synthesis, analytical characterization and monoamine transporter activity of the new psychoactive substance 4-methylphenmetrazine (4-MPM), with differentiation from its ortho- and meta- positional isomers.

    Get PDF
    The availability of new psychoactive substances on the recreational drug market continues to create challenges for scientists in the forensic, clinical and toxicology fields. Phenmetrazine (3-methyl-2-phenylmorpholine) and an array of its analogs form a class of psychostimulants that are well documented in the patent and scientific literature. The present study reports on two phenmetrazine analogs that have been encountered on the NPS drug market following the introduction of 3-fluorophenmetrazine (3-FPM), namely 4-methylphenmetrazine (4-MPM) and 3-methylphenmetrazine (3-MPM). This study describes the syntheses, analytical characterization and pharmacological evaluation of the positional isomers of MPM. Analytical characterizations employed various chromatographic, spectroscopic and mass spectrometric platforms. Pharmacological studies were conducted in order to assess whether MPM isomers might display stimulant-like effects similar to the parent compound phenmetrazine. The isomers were tested for their ability to inhibit uptake or stimulate release of tritiated substrates at dopamine, norepinephrine and serotonin transporters using in vitro transporter assays in rat brain synaptosomes. The analytical characterization of three vendor samples revealed the presence of 4-MPM in two of the samples and 3-MPM in the third sample, which agreed with the product label. The pharmacological findings suggest that 2-MPM and 3-MPM will exhibit stimulant properties similar to the parent compound phenmetrazine, whereas 4-MPM may display entactogen properties more similar to MDMA. The combination of test purchases, analytical characterization, targeted organic synthesis and pharmacological evaluation of NPS and their isomers is an effective approach for the provision of data on these substances as they emerge in the marketplace

    Synthesis, analytical characterization and monoamine transporter activity of the new psychoactive substance 4-methylphenmetrazine (4-MPM), with differentiation from its ortho- and meta- positional isomers.

    Get PDF
    The availability of new psychoactive substances on the recreational drug market continues to create challenges for scientists in the forensic, clinical and toxicology fields. Phenmetrazine (3-methyl-2-phenylmorpholine) and an array of its analogs form a class of psychostimulants that are well documented in the patent and scientific literature. The present study reports on two phenmetrazine analogs that have been encountered on the NPS drug market following the introduction of 3-fluorophenmetrazine (3-FPM), namely 4-methylphenmetrazine (4-MPM) and 3-methylphenmetrazine (3-MPM). This study describes the syntheses, analytical characterization and pharmacological evaluation of the positional isomers of MPM. Analytical characterizations employed various chromatographic, spectroscopic and mass spectrometric platforms. Pharmacological studies were conducted in order to assess whether MPM isomers might display stimulant-like effects similar to the parent compound phenmetrazine. The isomers were tested for their ability to inhibit uptake or stimulate release of tritiated substrates at dopamine, norepinephrine and serotonin transporters using in vitro transporter assays in rat brain synaptosomes. The analytical characterization of three vendor samples revealed the presence of 4-MPM in two of the samples and 3-MPM in the third sample, which agreed with the product label. The pharmacological findings suggest that 2-MPM and 3-MPM will exhibit stimulant properties similar to the parent compound phenmetrazine, whereas 4-MPM may display entactogen properties more similar to MDMA. The combination of test purchases, analytical characterization, targeted organic synthesis and pharmacological evaluation of NPS and their isomers is an effective approach for the provision of data on these substances as they emerge in the marketplace
    • …
    corecore