5 research outputs found

    CL316,243, a β3-adrenergic receptor agonist, induces muscle hypertrophy and increased strength.

    No full text
    Studies in vitro have demonstrated that β3-adrenergic receptors (β3-ARs) regulate protein metabolism in skeletal muscle by promoting protein synthesis and inhibiting protein degradation. In this study, we evaluated whether activation of β3-ARs by the selective agonist CL316,243 modifies the functional and structural properties of skeletal muscles of healthy mice. Daily injections of CL316,243 for 15 days resulted in a significant improvement in muscle force production, assessed by grip strength and weight tests, and an increased myofiber cross-sectional area, indicative of muscle hypertrophy. In addition, atomic force microscopy revealed a significant effect of CL316,243 on the transversal stiffness of isolated muscle fibers. Interestingly, the expression level of mammalian target of rapamycin (mTOR) downstream targets and neuronal nitric oxide synthase (NOS) was also found to be enhanced in tibialis anterior and soleus muscles of CL316,243 treated mice, in accordance with previous data linking β3-ARs to mTOR and NOS signaling pathways. In conclusion, our data suggest that CL316,243 systemic administration might be a novel therapeutic strategy worthy of further investigations in conditions of muscle wasting and weakness associated with aging and muscular diseases

    Place navigation in rats guided by a vestibular and kinesthetic orienting gradient.

    No full text

    Observational learning in Octopus vulgaris

    No full text

    Role of hippocampus in polymodal-cue guided tasks in rats.

    No full text
    To examine how signals from different sensory modalities are integrated to generate an appropriate goal-oriented behavior, we trained rats in an eight-arm radial maze to visit a cue arm provided with intramaze cues from different sensory modalities, i.e. visual, tactile and auditory, in order to obtain a reward. When the same rats were then examined on test trials in which the cue arm contained one of the stimuli that the animals were trained with (i.e. light, sound or rough sheet), they showed a significant impairment with respect to the performance on the polymodal-cue task. The contribution of the dorsal hippocampus to the acquisition and retention of polymodal-cue guided task was also examined. We found that rats with dorsal hippocampal lesions before training showed a significant deficit in the acquisition of polymodal-cue oriented task that improved with overtraining. The selective lesion of the dorsal hippocampus after training disrupted memory retention, but the animals' performance improved following retraining of the polymodal task. All hippocampal lesioned rats displayed an impaired performance on the unimodal test. These findings suggest that the dorsal hippocampus contributes to the processing of multimodal sensory information for the associative memory formation and consolidation
    corecore