36,006 research outputs found

    Small business credit scoring and credit availability

    Get PDF
    U.S. commercial banks are increasingly using credit scoring models to underwrite small business credits. This paper discusses this technology, evaluates the research findings on the effects of this technology on small business credit availability, and links these findings to a number of research and public policy issues.

    Werner state structure and entanglement classification

    Full text link
    We present applications of the representation theory of Lie groups to the analysis of structure and local unitary classification of Werner states, sometimes called the {\em decoherence-free} states, which are states of nn quantum bits left unchanged by local transformations that are the same on each particle. We introduce a multiqubit generalization of the singlet state, and a construction that assembles these into Werner states.Comment: 9 pages, 2 figures, minor changes and corrections for version

    A class of symplectic integrators with adaptive timestep for separable Hamiltonian systems

    Get PDF
    Symplectic integration algorithms are well-suited for long-term integrations of Hamiltonian systems because they preserve the geometric structure of the Hamiltonian flow. However, this desirable property is generally lost when adaptive timestep control is added to a symplectic integrator. We describe an adaptive-timestep symplectic integrator that can be used if the Hamiltonian is the sum of kinetic and potential energy components and the required timestep depends only on the potential energy (e.g. test-particle integrations in fixed potentials). In particular, we describe an explicit, reversible, symplectic, leapfrog integrator for a test particle in a near-Keplerian potential; this integrator has timestep proportional to distance from the attracting mass and has the remarkable property of integrating orbits in an inverse-square force field with only "along-track" errors; i.e. the phase-space shape of a Keplerian orbit is reproduced exactly, but the orbital period is in error by O(1/N^2), where N is the number of steps per period.Comment: 24 pages, 3 figures, submitted to Astronomical Journal; minor errors in equations and one figure correcte

    Tests of ex ante versus ex post theories of collateral using private and public information

    Get PDF
    Collateral is a widely used, but not well understood, debt-contracting feature. Two broad strands of theoretical literature explain collateral as arising from the existence of either ex ante private information or ex post incentive problems between borrowers and lenders. However, the extant empirical literature has been unable to isolate each of these effects. This paper attempts to do so using a credit registry that is unique in that it allows the researcher to have access to some private information about borrower risk that is unobserved by the lender. The data also include public information about borrower risk, loan contract terms, and ex post performance for both secured and unsecured loans. The results suggest that the ex post theories of collateral are empirically dominant although the ex ante theories are also valid for customers with short borrower-lender relationships that are relatively unknown to the lender.

    Classification of nonproduct states with maximum stabilizer dimension

    Full text link
    Nonproduct n-qubit pure states with maximum dimensional stabilizer subgroups of the group of local unitary transformations are precisely the generalized n-qubit Greenberger-Horne-Zeilinger states and their local unitary equivalents, for n greater than or equal to 3 but not equal to 4. We characterize the Lie algebra of the stabilizer subgroup for these states. For n=4, there is an additional maximal stabilizer subalgebra, not local unitary equivalent to the former. We give a canonical form for states with this stabilizer as well.Comment: 6 pages, version 3 has a typographical correction in the displayed equation just after numbered equation (2), and other minor correction

    The Hamiltonian structure of a two-dimensional rigid circular cylinder interacting dynamically with N point vortices

    Get PDF
    This paper studies the dynamical fluid plus rigid-body system consisting of a two-dimensional rigid cylinder of general cross-sectional shape interacting with N point vortices. We derive the equations of motion for this system and show that, in particular, if the vortex strengths sum to zero and the rigid-body has a circular shape, the equations are Hamiltonian with respect to a Poisson bracket structure that is the sum of the rigid body Lie–Poisson bracket on Se(2)*, the dual of the Lie algebra of the Euclidean group on the plane, and the canonical Poisson bracket for the dynamics of N point vortices in an unbounded plane. We then use this Hamiltonian structure to study the linear and nonlinear stability of the moving Föppl equilibrium solutions using the energy-Casimir method
    • …
    corecore