1,471 research outputs found

    Comparison of Functional Network Connectivity for Passive-Listening and Active-Response Narrative Comprehension in Adolescents

    Get PDF
    Comprehension of narrative stories plays an important role in the development of language skills. In this study, we compared brain activity elicited by a passive-listening version and an active-response (AR) version of a narrative comprehension task by using independent component (IC) analysis on functional magnetic resonance imaging data from 21 adolescents (ages 14–18 years). Furthermore, we explored differences in functional network connectivity engaged by two versions of the task and investigated the relationship between the online response time and the strength of connectivity between each pair of ICs. Despite similar brain region involvements in auditory, temporoparietal, and frontoparietal language networks for both versions, the AR version engages some additional network elements including the left dorsolateral prefrontal, anterior cingulate, and sensorimotor networks. These additional involvements are likely associated with working memory and maintenance of attention, which can be attributed to the differences in cognitive strategic aspects of the two versions. We found significant positive correlation between the online response time and the strength of connectivity between an IC in left inferior frontal region and an IC in sensorimotor region. An explanation for this finding is that longer reaction time indicates stronger connection between the frontal and sensorimotor networks caused by increased activation in adolescents who require more effort to complete the task

    Concordance of MEG and fMRI patterns in adolescents during verb generation

    Get PDF
    In this study we focused on direct comparison between the spatial distributions of activation detected by functional magnetic resonance imaging (fMRI) and localization of sources detected by magnetoencephalography (MEG) during identical language tasks. We examined the spatial concordance between MEG and fMRI results in 16 adolescents performing a three-phase verb generation task that involves repeating the auditorily presented concrete noun and generating verbs either overtly or covertly in response to the auditorily presented noun. MEG analysis was completed using a synthetic aperture magnetometry (SAM) technique, while the fMRI data were analyzed using the general linear model approach with random-effects. To quantify the agreement between the two modalities, we implemented voxel-wise concordance correlation coefficient (CCC) and identified the left inferior frontal gyrus and the bilateral motor cortex with high CCC values. At the group level, MEG and fMRI data showed spatial convergence in the left inferior frontal gyrus for covert or overt generation versus overt repetition, and the bilateral motor cortex when overt generation versus covert generation. These findings demonstrate the utility of the CCC as a quantitative measure of spatial convergence between two neuroimaging techniques

    Involvement of the right hemisphere in reading comprehension: a DTI study

    Get PDF
    The Simple View of reading emphasizes the critical role of two factors in normal reading skills: word recognition and reading comprehension. The current study aims to identify the anatomical support for aspects of reading performance that fall within these two components. Fractional anisotropy (FA) values were obtained from Diffusion Tensor images in twenty-one typical adolescents and young adults using the Tract Based Spatial Statistics (TBSS) method. We focused on the Arcuate Fasciculus (AF) and Inferior Longitudinal Fasciculus (ILF) as fiber tracts that connect regions already implicated in the distributed cortical network for reading. Our results demonstrate dissociation between word-level and narrative-level reading skills: the FA values for both left and right ILF were correlated with measures of word reading, while only the left ILF correlated with reading comprehension scores. FA in the AF, however, correlated only with reading comprehension scores, bilaterally. Correlations with the right AF were particularly robust, emphasizing the contribution of the right hemisphere, especially the frontal lobe, to reading comprehension performance on the particular passage comprehension test used in this study. The anatomical dissociation between these reading skills is supported by the Simple View theory and may shed light on why these two skills dissociate in those with reading disorders

    Sex differences in white matter development during adolescence: A DTI study

    Get PDF
    Adolescence is a complex transitional period in human development, composing physical maturation, cognitive and social behavioral changes. The objective of this study is to investigate sex differences in white matter development and the associations between intelligence and white matter microstructure in the adolescent brain using diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS). In a cohort of 16 typically-developing adolescents aged 13 to 17 years, longitudinal DTI data were recorded from each subject at two time points that were one year apart. We used TBSS to analyze the diffusion indices including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Our results suggest that boys (13–18 years) continued to demonstrate white matter maturation, whereas girls appeared to reach mature levels earlier. In addition, we identified significant positive correlations between FA and full-scale intelligence quotient (IQ) in the right inferior fronto-occipital fasciculus when both sexes were looked at together. Only girls showed significant positive correlations between FA and verbal IQ in the left cortico-spinal tract and superior longitudinal fasciculus. The preliminary evidence presented in this study supports that boys and girls have different developmental trajectories in white matter microstructure

    Optimized simultaneous ASL and BOLD functional imaging of the whole brain

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106990/1/jmri24273.pd

    Preliminary fMRI findings in experimentally sleep-restricted adolescents engaged in a working memory task

    Get PDF
    Here we report preliminary findings from a small-sample functional magnetic resonance imaging (fMRI) study of healthy adolescents who completed a working memory task in the context of a chronic sleep restriction experiment. Findings were consistent with those previously obtained on acutely sleep-deprived adults. Our data suggest that, when asked to maintain attention and burdened by chronic sleep restriction, the adolescent brain responds via compensatory mechanisms that accentuate the typical activation patterns of attention-relevant brain regions. Specifically, it appeared that regions that are normally active during an attention-demanding working memory task in the well-rested brain became even more active to maintain performance after chronic sleep restriction. In contrast, regions in which activity is normally suppressed during such a task in the well-rested brain showed even greater suppression to maintain performance after chronic sleep restriction. Although limited by the small sample, study results provide important evidence of feasibility, as well as guidance for future research into the functional neurological effects of chronic sleep restriction in general, the effects of sleep restriction in children and adolescents, and the neuroscience of attention and its disorders in children

    A Linear Structural Equation Model for Covert Verb Generation Based on Independent Component Analysis of fMRI Data from Children and Adolescents

    Get PDF
    Human language is a complex and protean cognitive ability. Young children, following well defined developmental patterns learn language rapidly and effortlessly producing full sentences by the age of 3 years. However, the language circuitry continues to undergo significant neuroplastic changes extending well into teenage years. Evidence suggests that the developing brain adheres to two rudimentary principles of functional organization: functional integration and functional specialization. At a neurobiological level, this distinction can be identified with progressive specialization or focalization reflecting consolidation and synaptic reinforcement of a network (Lenneberg, 1967; Muller et al., 1998; Berl et al., 2006). In this paper, we used group independent component analysis and linear structural equation modeling (McIntosh and Gonzalez-Lima, 1994; Karunanayaka et al., 2007) to tease out the developmental trajectories of the language circuitry based on fMRI data from 336 children ages 5–18 years performing a blocked, covert verb generation task. The results are analyzed and presented in the framework of theoretical models for neurocognitive brain development. This study highlights the advantages of combining both modular and connectionist approaches to cognitive functions; from a methodological perspective, it demonstrates the feasibility of combining data-driven and hypothesis driven techniques to investigate the developmental shifts in the semantic network

    Functional Magnetic Resonance Imaging in Pediatrics

    Get PDF
    Functional magnetic resonance imaging (fMRI) allows non-invasive assessment of human brain function in vivo by detecting blood flow differences. In this review, we want to illustrate the background and different aspects of performing functional magnetic resonance imaging (fMRI) in the pediatric age group. An overview over current and future applications of fMRI will be given, and typical problems, pitfalls, and benefits of doing fMRI in the pediatric age group are discussed. We conclude that fMRI can successfully be applied in children and holds great promise for both research and clinical purposes

    Evidence that neurovascular coupling underlying the BOLD effect increases with age during childhood

    Full text link
    Functional MRI using blood–oxygen‐level‐dependent (BOLD) imaging has provided unprecedented insights into the maturation of the human brain. Task‐based fMRI studies have shown BOLD signal increases with age during development (ages 5–18) for many cognitive domains such as language and executive function, while functional connectivity (resting‐state) fMRI studies investigating regionally synchronous BOLD fluctuations have revealed a developing functional organization of the brain from a local into a more distributed architecture. However, interpretation of these results is confounded by the fact that the BOLD signal is directly related to blood oxygenation driven by changes in blood flow and only indirectly related to neuronal activity, and may thus be affected by changing neuronal–vascular coupling. BOLD signal and cerebral blood flow (CBF) were measured simultaneously in a cohort of 113 typically developing awake participants ages 3–18 performing a narrative comprehension task. Using a novel voxelwise wild bootstrap analysis technique, an increased ratio of BOLD signal to relative CBF signal change with age (indicative of increased neuronal–vascular coupling) was seen in the middle temporal gyri and the left inferior frontal gyrus. Additionally, evidence of decreased relative oxygen metabolism (indicative of decreased neuronal activity) with age was found in the same regions. These findings raise concern that results of developmental BOLD studies cannot be unambiguously attributed to neuronal activity. Astrocytes and astrocytic processes may significantly affect the maturing functional architecture of the brain, consistent with recent research demonstrating a key role for astrocytes in mediating increased CBF following neuronal activity and for astrocyte processes in modulating synaptic connectivity. Hum Brain Mapp, 36:1–15, 2015 . © 2014 Wiley Periodicals, Inc .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110113/1/hbm22608.pd
    • 

    corecore