269,632 research outputs found

    Holding strategies in a bus-route model

    Full text link
    A major source of delays in public transportation is the clustering instability, which causes late buses to become progressively later while the buses trailing it become progressively earlier. In this paper, we study this instability and how to neutralize it using the common practices of holding and schedule slack. Starting with an on-time route, we delay one or more buses at a single stop, and determine how these delays grow over time. We compare the effects of two different types of holding on the stability of the system, and briefly investigate how our results change with the use of timepoints.Comment: 6 pages, 6 figures v2 has been moderately copyedited, but has no new content Paper has been submitted to Physical Review

    Leadership as Spiritual Direction

    Get PDF

    Bidirectional drive and brake mechanism

    Get PDF
    A space transport vehicle is disclosed as including a body which is arranged to be movably mounted on an elongated guide member disposed in outer space and driven therealong. A drive wheel is mounted on a drive shaft and arranged to be positioned in rolling engagement with the elongated guide carrying the vehicle. A brake member is arranged on the drive shaft for movement into and out of engagement with an adjacent surface of the drive wheel. An actuator is mounted on the body to be manually moved back and forth between spaced positions in an arc of movement. A ratchet-and-pawl mechanism is arranged to operate upon movements of the actuator in one direction between first and second positions for coupling the actuator to the drive wheel to incrementally rotate the wheel in one rotational direction and to operate upon movements of the actuator in the opposite direction for uncoupling the actuator from the wheel. The brake member is threadedly coupled to the drive shaft in order that the brake member will be operated only when the actuator is moved on beyond its first and second positions for shifting the brake member along the drive shaft and into frictional engagement with the adjacent surface on the drive wheel

    A brief survey of LISA sources and science

    Get PDF
    LISA is a planned space-based gravitational-wave (GW) detector that would be sensitive to waves from low-frequency sources, in the band of roughly (0.030.1)mHzf0.1Hz(0.03 - 0.1) {\rm mHz} \lesssim f \lesssim 0.1 {\rm Hz}. This is expected to be an extremely rich chunk of the GW spectrum -- observing these waves will provide a unique view of dynamical processes in astrophysics. Here we give a quick survey of some key LISA sources and what GWs can uniquely teach us about these sources. Particularly noteworthy science which is highlighted here is the potential for LISA to track the moderate to high redshift evolution of black hole masses and spins through the measurement of GWs generated from massive black hole binaries (which in turn form by the merger of galaxies and protogalaxies). Measurement of these binary black hole waves has the potential to determine the masses and spins of the constituent black holes with percent-level accuracy or better, providing a unique high-precision probe of an aspect of early structure growth. This article is based on the ``Astrophysics Tutorial'' talk given by the author at the Sixth International LISA Symposium.Comment: 8 pages, 2 figures, for the Proceedings of the Sixth International LISA Symposium. Particularly silly typo in one equation fixe
    corecore