7 research outputs found

    Cost-Effectiveness of Adolescent Pertussis Vaccination for The Netherlands: Using an Individual-Based Dynamic Model

    Get PDF
    BACKGROUND: Despite widespread immunization programs, a clear increase in pertussis incidence is apparent in many developed countries during the last decades. Consequently, additional immunization strategies are considered to reduce the burden of disease. The aim of this study is to design an individual-based stochastic dynamic framework to model pertussis transmission in the population in order to predict the epidemiologic and economic consequences of the implementation of universal booster vaccination programs. Using this framework, we estimate the cost-effectiveness of universal adolescent pertussis booster vaccination at the age of 12 years in the Netherlands. METHODS/PRINCIPAL FINDINGS: We designed a discrete event simulation (DES) model to predict the epidemiological and economic consequences of implementing universal adolescent booster vaccination. We used national age-specific notification data over the period 1996-2000--corrected for underreporting--to calibrate the model assuming a steady state situation. Subsequently, booster vaccination was introduced. Input parameters of the model were derived from literature, national data sources (e.g. costing data, incidence and hospitalization data) and expert opinions. As there is no consensus on the duration of immunity acquired by natural infection, we considered two scenarios for this duration of protection (i.e. 8 and 15 years). In both scenarios, total pertussis incidence decreased as a result of adolescent vaccination. From a societal perspective, the cost-effectiveness was estimated at €4418/QALY (range: 3205-6364 € per QALY) and €6371/QALY (range: 4139-9549 € per QALY) for the 8- and 15-year protection scenarios, respectively. Sensitivity analyses revealed that the outcomes are most sensitive to the quality of life weights used for pertussis disease. CONCLUSIONS/SIGNIFICANCE: To our knowledge we designed the first individual-based dynamic framework to model pertussis transmission in the population. This study indicates that adolescent pertussis vaccination is likely to be a cost-effective intervention for The Netherlands. The model is suited to investigate further pertussis booster vaccination strategies

    Comparative Genomics of Bordetella pertussis Reveals Progressive Gene Loss in Finnish Strains

    Get PDF
    BACKGROUND: Bordetella pertussis is a gram-negative bacterium that infects the human respiratory tract and causes pertussis or whooping cough. The disease has resurged in many countries including Finland where the whole-cell pertussis vaccine has been used for more than 50 years. Antigenic divergence has been observed between vaccine strains and clinical isolates in Finland. To better understand genome evolution in B. pertussis circulating in the immunized population, we developed an oligonucleotide-based microarray for comparative genomic analysis of Finnish strains isolated during the period of 50 years. METHODOLOGY/PRINCIPAL FINDINGS: The microarray consisted of 3,582 oligonucleotides (70-mer) and covered 94% of 3,816 ORFs of Tohama I, the strain of which the genome has been sequenced. Twenty isolates from 1953 to 2004 were studied together with two Finnish vaccine strains and two international reference strains. The isolates were selected according to their characteristics, e.g. the year and place of isolation and pulsed-field gel electrophoresis profiles. Genomic DNA of the tested strains, along with reference DNA of Tohama I strain, was labelled and hybridized. The absence of genes as established with microarrays, was confirmed by PCR. Compared with the Tohama I strain, Finnish isolates lost 7 (8.6 kb) to 49 (55.3 kb) genes, clustered in one to four distinct loci. The number of lost genes increased with time, and one third of lost genes had functions related to inorganic ion transport and metabolism, or energy production and conversion. All four loci of lost genes were flanked by the insertion sequence element IS481. CONCLUSION/SIGNIFICANCE: Our results showed that the progressive gene loss occurred in Finnish B. pertussis strains isolated during a period of 50 years and confirmed that B. pertussis is dynamic and is continuously evolving, suggesting that the bacterium may use gene loss as one strategy to adapt to highly immunized populations

    Differential Expression of Type III Effector BteA Protein Due to IS481 Insertion in Bordetella pertussis

    Get PDF
    BACKGROUND: Bordetella pertussis is the primary etiologic agent of the disease pertussis. Universal immunization programs have contributed to a significant reduction in morbidity and mortality of pertussis; however, incidence of the disease, especially in adolescents and adults, has increased in several countries despite high vaccination coverage. During the last three decades, strains of Bordetella pertussis in circulation have shifted from the vaccine-type to the nonvaccine-type in many countries. A comparative proteomic analysis of the strains was performed to identify protein(s) involved in the type shift. METHODOLOGY/PRINCIPAL FINDING: Proteomic analysis identified one differentially expressed protein in the B. pertussis strains: the type III cytotoxic effector protein BteA, which is responsible for host cell death in Bordetella bronchiseptica infections. Immunoblot analysis confirmed the prominent expression of BteA protein in the nonvaccine-type strains but not in the vaccine-type strains. Sequence analysis of the vaccine-type strains revealed an IS481 insertion in the 5' untranslated region of bteA, -136 bp upstream of the bteA start codon. A high level of bteA transcripts from the IS481 promoter was detected in the vaccine-type strains, indicating that the transcript might be an untranslatable form. Furthermore, BteA mutant studies demonstrated that BteA expression in the vaccine-type strains is down-regulated by the IS481 insertion. CONCLUSION/SIGNIFICANCE: The cytotoxic effector BteA protein is expressed at higher levels in B. pertussis nonvaccine-type strains than in vaccine-type strains. This type-dependent expression is due to an insertion of IS481 in B. pertussis clinical strains, suggesting that augmented expression of BteA protein might play a key role in the type shift of B. pertussis
    corecore