2,823 research outputs found

    Tunneling edges at strong disorder

    Full text link
    Scattering between edge states that bound one-dimensional domains of opposite potential or flux is studied, in the presence of strong potential or flux disorder. A mobility edge is found as a function of disorder and energy, and we have characterized the extended phase. "paper_FINAL.tex" 439 lines, 20366 characters In the presence of flux and/or potential disorder, the localization length scales exponentially with the width of the barrier. We discuss implications for the random-flux problem.Comment: RevTeX, 4 page

    Molecular line opacity of LiCl in the mid-infrared spectra of brown dwarfs

    Full text link
    We present a complete line list for the X 1Sigma+ electronic ground state of LiCl computed using fully quantum-mechanical techniques. This list includes transition energies and oscillator strengths in the spectral region 0.3-39,640.7 cm-1 for all allowed rovibrational transitions in absorption within the electronic ground state. The calculations were performed using an accurate hybrid potential constructed from a spectral inversion fit of experimental data and from recent multi-reference single- and double-excitation configuration interaction calculations. The line list was incorporated into the stellar atmosphere code PHOENIX to compute spectra for a range of young to old T dwarf models. The possibility of observing a signature of LiCl in absorption near 15.8 microns is addressed and the proposal to use this feature to estimate the total lithium elemental abundance for these cool objects is discussed.Comment: 8 pages, 2 figures, 1 table. Accepted for publication in ApJ 613, Sept. 20 200

    Critical level spacing distribution of two-dimensional disordered systems with spin-orbit coupling

    Full text link
    The energy level statistics of 2D electrons with spin-orbit scattering are considered near the disorder induced metal-insulator transition. Using the Ando model, the nearest-level-spacing distribution is calculated numerically at the critical point. It is shown that the critical spacing distribution is size independent and has a Poisson-like decay at large spacings as distinct from the Gaussian asymptotic form obtained by the random-matrix theory.Comment: 7 pages REVTeX, 2 uuencoded, gzipped figures; J. Phys. Condensed Matter, in prin

    Infrared Spectra and Spectral Energy Distributions of Late-M- and L-Dwarfs

    Get PDF
    We have obtained 1.0-2.5um spectra at R~600 of 14 disk dwarfs with spectral types M6 to L7. For four of the dwarfs we have also obtained infrared spectra at R~3000 in narrow intervals. In addition, we present new L' photometry for four of the dwarfs in the sample, which allows improved determinations of their bolometric luminosities. We resolve the L-dwarf Denis-P J 0205-1159 into an identical pair of objects separated by 0.35". The spectra, with the published energy distribution for one other dwarf, are compared to synthetic spectra generated by upgraded model atmospheres. Good matches are found for 2200> Teff K>1900 (spectral types around M9 to L3), but discrepancies exist at Teff> 2300 K (M8) and for Teff<1800 K (L4-L7). At the higher temperatures the mismatches are due to incompleteness in the water vapor linelist. At the lower temperatures the disagreement is probably due to our treatment of dust: we assume a photospheric distribution in equilibrium with the gas phase. We derive effective temperatures for the sample from the comparison with synthetic spectra and also by comparing our observed total intrinsic luminosities to structural model calculations (which are mostly independent of the atmosphere but are dependent on the unknown masses and ages of the targets). The two derivations agree to ~200 K except for the faintest object in the sample where the discrepancy is larger. Agreement with other temperature determinations is also ~200 K, except for the L7 dwarf.Comment: 31 pages incl. 5 Tables and 12 Figures, accepted by ApJ for Feb 2001 issu

    Electronic State and Magnetic Susceptibility in Orbitally Degenerate (J=5/2) Periodic Anderson Model

    Full text link
    Magnetic susceptibility in a heavy fermion systemis composed of the Pauli term (\chi_P) and the Van-Vleck term (\chi_V). The latter comes from the interband excitation, where f-orbital degeneracy is essential. In this work, we study \chi_P and \chi_V in the orbitally degenerate (J=5/2) periodic Anderson model for both the metallic and insulating cases. The effect of the correlation between f-electrons is investigated using the self-consistent second-order perturbation theory. The main results are as follows. (i) Sixfold degenerate model: both \chi_P and \chi_V are enhanced by a factor of 1/z (z is the renormalization constant). (ii) Nondegenerate model: only \chi_P is enhanced by 1/z. Thus, orbital degeneracy is indispensable for enhancement of \chi_V. Moreover, orbital degeneracy reduces the Wilson ratio and stabilizes a nonmagnetic Fermi liquid state.Comment: 4 pages, revtex, to be published in J. Phys. Soc. Jpn. (No.8

    Thermoelectric properties of the degenerate Hubbard model

    Full text link
    We investigate the thermoelectric properties of a system near a pressure driven Mott-Hubbard transition. The dependence of the thermopower and the figure of merit on pressure and temperature within a degenerate Hubbard model for integer filling n=1 is calculated using dynamical mean field theory. Quantum Monte Carlo method is used to solve the impurity model. Obtained results can qualitatively explain thermoelectric properties of various strongly correlated materials.Comment: RevTex, 7 pages, 6 figure

    Diffusing opinions in bounded confidence processes

    Get PDF
    We study the effects of diffusing opinions on the Deffuant et al. model for continuous opinion dynamics. Individuals are given the opportunity to change their opinion, with a given probability, to a randomly selected opinion inside an interval centered around the present opinion. We show that diffusion induces an order-disorder transition. In the disordered state the opinion distribution tends to be uniform, while for the ordered state a set of well defined opinion clusters are formed, although with some opinion spread inside them. If the diffusion jumps are not large, clusters coalesce, so that weak diffusion favors opinion consensus. A master equation for the process described above is presented. We find that the master equation and the Monte-Carlo simulations do not always agree due to finite-size induced fluctuations. Using a linear stability analysis we can derive approximate conditions for the transition between opinion clusters and the disordered state. The linear stability analysis is compared with Monte Carlo simulations. Novel interesting phenomena are analyzed

    Theory of Thermoelectric Power in High-Tc Superconductors

    Full text link
    We present a microscopic theory for the thermoelectric power (TEP) in high-Tc cuprates. Based on the general expression for the TEP, we perform the calculation of the TEP for a square lattice Hubbard model including all the vertex corrections necessary to satisfy the conservation laws. In the present study, characteristic anomalous temperature and doping dependences of the TEP in high-Tc cuprates, which have been a long-standing problem of high-Tc cuprates, are well reproduced for both hole- and electron-doped systems, except for the heavily under-doped case. According to the present analysis, the strong momentum and energy dependences of the self-energy due to the strong antiferromagnetic fluctuations play an essential role in reproducing experimental anomalies of the TEP.Comment: 5 pages, 8 figures, to appear in J. Phys. Soc. Jpn. 70 (2001) No.10. Figure 2 has been revise

    Systemic Risk in a Unifying Framework for Cascading Processes on Networks

    Full text link
    We introduce a general framework for models of cascade and contagion processes on networks, to identify their commonalities and differences. In particular, models of social and financial cascades, as well as the fiber bundle model, the voter model, and models of epidemic spreading are recovered as special cases. To unify their description, we define the net fragility of a node, which is the difference between its fragility and the threshold that determines its failure. Nodes fail if their net fragility grows above zero and their failure increases the fragility of neighbouring nodes, thus possibly triggering a cascade. In this framework, we identify three classes depending on the way the fragility of a node is increased by the failure of a neighbour. At the microscopic level, we illustrate with specific examples how the failure spreading pattern varies with the node triggering the cascade, depending on its position in the network and its degree. At the macroscopic level, systemic risk is measured as the final fraction of failed nodes, XX^\ast, and for each of the three classes we derive a recursive equation to compute its value. The phase diagram of XX^\ast as a function of the initial conditions, thus allows for a prediction of the systemic risk as well as a comparison of the three different model classes. We could identify which model class lead to a first-order phase transition in systemic risk, i.e. situations where small changes in the initial conditions may lead to a global failure. Eventually, we generalize our framework to encompass stochastic contagion models. This indicates the potential for further generalizations.Comment: 43 pages, 16 multipart figure
    corecore