13,848 research outputs found
A note on the Hybrid Soil Moisture Deficit Model v2.0
peer-reviewedThe Hybrid Soil Moisture Deficit (HSMD) model has been used for a wide range of applications, including modelling of grassland productivity and utilisation, assessment of agricultural management opportunities such as slurry spreading, predicting nutrient emissions to the environment and risks of pathogen transfer to water. In the decade since its publication, various ad hoc modifications have been developed and the recent publication of the Irish Soil Information System has facilitated improved assessment of the spatial soil moisture dynamics. In this short note, we formally present a new version of the model (HSMD2.0), which includes two new soil drainage classes, as well as an optional module to account for the topographic wetness index at any location. In addition, we present a new Indicative Soil Drainage Map for Ireland, based on the Irish Soil Classification system, developed as part of the Irish Soil Information System
Regular Incidence Complexes, Polytopes, and C-Groups
Regular incidence complexes are combinatorial incidence structures
generalizing regular convex polytopes, regular complex polytopes, various types
of incidence geometries, and many other highly symmetric objects. The special
case of abstract regular polytopes has been well-studied. The paper describes
the combinatorial structure of a regular incidence complex in terms of a system
of distinguished generating subgroups of its automorphism group or a
flag-transitive subgroup. Then the groups admitting a flag-transitive action on
an incidence complex are characterized as generalized string C-groups. Further,
extensions of regular incidence complexes are studied, and certain incidence
complexes particularly close to abstract polytopes, called abstract polytope
complexes, are investigated.Comment: 24 pages; to appear in "Discrete Geometry and Symmetry", M. Conder,
A. Deza, and A. Ivic Weiss (eds), Springe
Agriculture, meteorology and water quality in Ireland: a regional evaluation of pressures and pathways of nutrient loss to water
peer-reviewedThe main environmental impact of Irish agriculture on surface and ground water quality is the potential transfer of nutrients to water. Soil water dynamics mediate the transport of nutrients to water, and these dynamics in turn depend on agro-meteorological conditions, which show large variations between regions, seasons and years. In this paper we quantify and map the spatio-temporal variability of agro-meteorological factors that control nutrient pressures and pathways of nutrient loss. Subsequently, we evaluate their impact on the water quality of Irish rivers. For nitrogen, pressure and pathways factors coincide in eastern and southern areas, which is reflected in higher nitrate levels of the rivers in these regions. For phosphorus, pathway factors are most pronounced in north-western parts of the country. In south-eastern parts, high pressure factors result in reduced biological water quality. These regional differences require that farm practices be customised to reflect the local risk of nutrient loss to water. Where pathways for phosphorus loss are present almost year-round—as is the case in most of the north-western part of the country—build-up of pressures should be prevented, or ameliorated where already high. In south-eastern areas, spatio-temporal coincidence of nutrient pressures and pathways should be prevented, which poses challenges to grassland management
Optimal Control for Generating Quantum Gates in Open Dissipative Systems
Optimal control methods for implementing quantum modules with least amount of
relaxative loss are devised to give best approximations to unitary gates under
relaxation. The potential gain by optimal control using relaxation parameters
against time-optimal control is explored and exemplified in numerical and in
algebraic terms: it is the method of choice to govern quantum systems within
subspaces of weak relaxation whenever the drift Hamiltonian would otherwise
drive the system through fast decaying modes. In a standard model system
generalising decoherence-free subspaces to more realistic scenarios,
openGRAPE-derived controls realise a CNOT with fidelities beyond 95% instead of
at most 15% for a standard Trotter expansion. As additional benefit it requires
control fields orders of magnitude lower than the bang-bang decouplings in the
latter.Comment: largely expanded version, superseedes v1: 10 pages, 5 figure
Electron spin resonance on a 2-dimensional electron gas in a single AlAs quantum well
Direct electron spin resonance (ESR) on a high mobility two dimensional
electron gas in a single AlAs quantum well reveals an electronic -factor of
1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 Gauss. The
ESR amplitude and its temperature dependence suggest that the signal originates
from the effective magnetic field caused by the spin orbit-interaction and a
modulation of the electron wavevector caused by the microwave electric field.
This contrasts markedly to conventional ESR that detects through the microwave
magnetic field.Comment: 4 pages, 4 figure
Does EELS haunt your photoemission measurements?
It has been argued in a recent paper by R. Joynt (R. Joynt, Science 284, p
777 (1999)) that in the case of poorly conducting solids the photoemission
spectrum close to the Fermi Energy may be strongly influenced by extrinsic loss
processes similar to those occurring in High Resolution Electron Energy Loss
Spectroscopy (HR-EELS), thereby obscuring information concerning the density of
states or one electron Green's function sought for. In this paper we present a
number of arguments, both theoretical and experimental, that demonstrate that
energy loss processes occurring once the electron is outside the solid,
contribute only weakly to the spectrum and can in most cases be either
neglected or treated as a weak structureless background.Comment: 6 pages, figures included. Submitted to PR
Uncovering Bugs in Distributed Storage Systems during Testing (not in Production!)
Testing distributed systems is challenging due to multiple sources of nondeterminism. Conventional testing techniques, such as unit, integration and stress testing, are ineffective in preventing serious but subtle bugs from reaching production. Formal techniques, such as TLA+, can only verify high-level specifications of systems at the level of logic-based models, and fall short of checking the actual executable code. In this paper, we present a new methodology for testing distributed systems. Our approach applies advanced systematic testing techniques to thoroughly check that the executable code adheres to its high-level specifications, which significantly improves coverage of important system behaviors. Our methodology has been applied to three distributed storage systems in the Microsoft Azure cloud computing platform. In the process, numerous bugs were identified, reproduced, confirmed and fixed. These bugs required a subtle combination of concurrency and failures, making them extremely difficult to find with conventional testing techniques. An important advantage of our approach is that a bug is uncovered in a small setting and witnessed by a full system trace, which dramatically increases the productivity of debugging
- …