269 research outputs found
Magnetic and lattice polaron in Holstein-t-J model
We investigate the interplay between the formation of lattice and magnetic
polaron in the case of a single hole in the antiferromagnetic background. We
present an exact analytical solution of the Holstein-t-J model in infinite
dimensions. Ground state energy, electron-lattice correlation function, spin
bag dimension as well as spectral properties are calculated. The magnetic and
hole-lattice correlations sustain each other, i.e. the presence of
antiferromagnetic correlations favors the formation of the lattice polaron at
lower value of the electron-phonon coupling while the polaronic effect
contributes to reduce the number of spin defects in the antiferromagnetic
background. The crossover towards a spin-lattice small polaron region of the
phase diagram becomes a discontinuous transition in the adiabatic limit.Comment: revtex, 8 eps figures included NEW version. Appendix with a full
proof include
Photoemission spectra of : a theoretical analysis
Recent angle resolved photoemission (ARPES) results for the insulating
cuprate have provided the first experimental data
which can be directly compared to the (theoretically) well--studied problem of
a single hole propagating in an antiferromagnet. The ARPES results reported a
small bandwidth, providing evidence for the existence of strong correlations in
the cuprates. However, in the same experiment some discrepancies with the
familiar 2D model were also observed. Here we discuss a comparison
between the ARPES results and the quasiparticle dispersion of both (i) the
Hamiltonian and (ii) the three--band Hubbard model in the
strong--coupling limit. Both model Hamiltonians show that the experimentally
observed one--hole band structure can be approximately reproduced using
reasonable values for , or the direct oxygen hopping amplitude .Comment: 11 pages, RevTex version 3.0, 3 postscript figures, LaTeX file and
figures have been uuencoded
Low energy and dynamical properties of a single hole in the t-Jz model
We review in details a recently proposed technique to extract information
about dynamical correlation functions of many-body hamiltonians with a few
Lanczos iterations and without the limitation of finite size. We apply this
technique to understand the low energy properties and the dynamical spectral
weight of a simple model describing the motion of a single hole in a quantum
antiferromagnet: the model in two spatial dimension and for a double
chain lattice. The simplicity of the model allows us a well controlled
numerical solution, especially for the two chain case. Contrary to previous
approximations we have found that the single hole ground state in the infinite
system is continuously connected with the Nagaoka fully polarized state for
. Analogously we have obtained an accurate determination of the
dynamical spectral weight relevant for photoemission experiments. For
an argument is given that the spectral weight vanishes at the Nagaoka energy
faster than any power law, as supported also by a clear numerical evidence. It
is also shown that spin charge decoupling is an exact property for a single
hole in the Bethe lattice but does not apply to the more realistic lattices
where the hole can describe closed loop paths.Comment: RevTex 3.0, 40 pages + 16 Figures in one file self-extracting, to
appear in Phys. Rev
Holes in the t-J_z model: a thorough study
The t-J_z model is the strongly anisotropic limit of the t-J model which
captures some general properties of the doped antiferromagnets (AF). The
absence of spin fluctuations simplifies the analytical treatment of hole motion
in an AF background and allows us to calculate the single- and two-hole spectra
with high accuracy using regular diagram technique combined with real-space
approach. At the same time, numerical studies of this model via exact
diagonalization (ED) on small clusters show negligible finite size effects for
a number of quantities, thus allowing a direct comparison between analytical
and numerical results. Both approaches demonstrate that the holes have tendency
to pair in the p- and d-wave channels at realistic values of t/J. The
interactions leading to pairing and effects selecting p and d waves are
thoroughly investigated. The role of transverse spin fluctuations is considered
using perturbation theory. Based on the results of the present study, we
discuss the pairing problem in the realistic t-J-like model. Possible
implications for preformed pairs formation and phase separation are drawn.Comment: 21 pages, 15 figure
Magnetic polarons in weakly doped high-Tc superconductors
We consider a spin Hamiltonian describing - exchange interactions
between localized spins of a finite antiferromagnet as well as -
interactions between a conducting hole () and localized spins. The spin
Hamiltonian is solved numerically with use of Lanczos method of
diagonalization. We conclude that - exchange interaction leads to
localization of magnetic polarons. Quantum fluctuations of the antiferromagnet
strengthen this effect and make the formation of polarons localized in one site
possible even for weak - coupling. Total energy calculations, including
the kinetic energy, do not change essentially the phase diagram of magnetic
polarons formation. For parameters reasonable for high- superconductors
either a polaron localized on one lattice cell or a small ferron can form. For
reasonable values of the dielectric function and - coupling, the
contributions of magnetic and phonon terms in the formation of a polaron in
weakly doped high- materials are comparable.Comment: revised, revtex-4, 12 pages 8 eps figure
Spin polaron damping in the spin-fermion model for cuprate superconductors
A self-consistent, spin rotational invariant Green's function procedure has
been developed to calculate the spectral function of carrier excitations in the
spin-fermion model for the CuO2 plane. We start from the mean field description
of a spin polaron in the Mori-Zwanzig projection method. In order to determine
the spin polaron lifetime in the self-consistent Born approximation, the
self-energy is expressed by an irreducible Green's function. Both, spin polaron
and bare hole spectral functions are calculated. The numerical results show a
well pronounced quasiparticle peak near the bottom of the dispersion at
(pi/2,pi/2), the absence of the quasiparticle at the Gamma-point, a rather
large damping away from the minimum and an asymmetry of the spectral function
with respect to the antiferromagnetic Brillouin zone. These findings are in
qualitative agreement with photoemission data for undoped cuprates. The direct
oxygen-oxygen hopping is responsible for a more isotropic minimum at
(pi/2,pi/2).Comment: 18 pages, 13 figure
The Fueling and Evolution of AGN: Internal and External Triggers
In this chapter, I review the fueling and evolution of active galactic nuclei
(AGN) under the influence of internal and external triggers, namely intrinsic
properties of host galaxies (morphological or Hubble type, color, presence of
bars and other non-axisymmetric features, etc) and external factors such as
environment and interactions. The most daunting challenge in fueling AGN is
arguably the angular momentum problem as even matter located at a radius of a
few hundred pc must lose more than 99.99 % of its specific angular momentum
before it is fit for consumption by a BH. I review mass accretion rates,
angular momentum requirements, the effectiveness of different fueling
mechanisms, and the growth and mass density of black BHs at different epochs. I
discuss connections between the nuclear and larger-scale properties of AGN,
both locally and at intermediate redshifts, outlining some recent results from
the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All
Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte
- …