63,322 research outputs found

    The effects of temperature gradient and growth rate on the morphology and fatigue properties of MAR-M246(Hf)

    Get PDF
    MAR-M246(Hf) is a nickel based superalloy used in the turbopump blades of the Space Shuttle main engines. The effects are considered of temperature gradient (G) and growth rate (R) on the microstructure and fatigue properties of this superalloy. The primary dendrite arm spacings were found to be inversely proportional to both temperature gradient and growth rate. Carbide and gamma - gamma prime morphology trends were related to G/R ratios. Weibull analysis of fatigue results shows the characteristic life to be larger by a factor of 10 for the low gradient/fast rate pairing of G and R, while the reliability (beta) was lower

    Balance training of the equilibrium organ and its effect on flight strategy

    Get PDF
    An experimental program was conducted with the pendular platform of the Oto-Rhino-Laryngology Clinic, which was developed for the investigation of disturbances of the equilibrium. The equilibrium sense of the glider pilot was emphasized. Results are presented

    Final excitation energy of fission fragments

    Full text link
    We study how the excitation energy of the fully accelerated fission fragments is built up. It is stressed that only the intrinsic excitation energy available before scission can be exchanged between the fission fragments to achieve thermal equilibrium. This is in contradiction with most models used to calculate prompt neutron emission where it is assumed that the total excitation energy of the final fragments is shared between the fragments by the condition of equal temperatures. We also study the intrinsic excitation-energy partition according to a level density description with a transition from a constant-temperature regime to a Fermi-gas regime. Complete or partial excitation-energy sorting is found at energies well above the transition energy.Comment: 8 pages, 3 figure

    Dielectronic recombination data for astrophysical applications: Plasma rate-coefficients for Fe^q+ (q=7-10, 13-22) and Ni^25+ ions from storage-ring experiments

    Get PDF
    This review summarizes the present status of an ongoing experimental effort to provide reliable rate coefficients for dielectronic recombination of highly charged iron ions for the modeling of astrophysical and other plasmas. The experimental work has been carried out over more than a decade at the heavy-ion storage-ring TSR of the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany. The experimental and data reduction procedures are outlined. The role of previously disregarded processes such as fine-structure core excitations and trielectronic recombination is highlighted. Plasma rate coefficients for dielectronic recombination of Fe^q+ ions (q=7-10, 13-22) and Ni^25+ are presented graphically and in a simple parameterized form allowing for easy use in plasma modeling codes. It is concluded that storage-ring experiments are presently the only source for reliable low-temperature dielectronic recombination rate-coefficients of complex ions.Comment: submitted for publication in the International Review of Atomic and Molecular Physics, 8 figures, 3 tables, 68 reference
    corecore