449 research outputs found

    Pastoral Pleasures : the picnic in American art before 1870

    Get PDF

    GENETIC CONTROL OF IMMUNE RESPONSES IN VITRO : V. STIMULATION OF SUPPRESSOR T CELLS IN NONRESPONDER MICE BY THE TERPOLYMERL-GLUTAMIC ACID60-L-ALANINE30-L-TYROSINE10 (GAT)

    Get PDF
    In recent studies we have found that GAT not only fails to elicit a GAT-specific response in nonresponder mice but also specifically decreases the ability of nonresponder mice to develop a GAT-specific PFC response to a subsequent challenge with GAT bound to the immunogenic carrier, MBSA. Studies presented in this paper demonstrate that B cells from nonresponder, DBA/1 mice rendered unresponsive by GAT in vivo can respond in vitro to GAT-MBSA if exogenous, carrier-primed T cells are added to the cultures. The unresponsiveness was shown to be the result of impaired carrier-specific helper T-cell function in the spleen cells of GAT-primed mice. Spleen cells from GAT-primed mice specifically suppressed the GAT-specific PFC response of spleen cells from normal DBA/1 mice incubated with GAT-MBSA. This suppression was prevented by pretreatment of GAT-primed spleen cells with anti-θ serum plus C or X irradiation. Identification of the suppressor cells as T cells was confirmed by the demonstration that suppressor cells were confined to the fraction of the column-purified lymphocytes which contained θ-positive cells and a few non-Ig-bearing cells. The significance of these data to our understanding of Ir-gene regulation of the immune response is discussed

    Monovalent Ion Condensation at the Electrified Liquid/Liquid Interface

    Full text link
    X-ray reflectivity studies demonstrate the condensation of a monovalent ion at the electrified interface between electrolyte solutions of water and 1,2-dichloroethane. Predictions of the ion distributions by standard Poisson-Boltzmann (Gouy-Chapman) theory are inconsistent with these data at higher applied interfacial electric potentials. Calculations from a Poisson-Boltzmann equation that incorporates a non-monotonic ion-specific potential of mean force are in good agreement with the data.Comment: 4 pages, 4 figure

    Vaporization and Layering of Alkanols at the Oil/Water Interface

    Full text link
    This study of adsorption of normal alkanols at the oil/water interface with x-ray reflectivity and tensiometry demonstrates that the liquid to gas monolayer phase transition at the hexane/water interface is thermodynamically favorable only for long-chain alkanols. As the alkanol chain length is decreased, the change in excess interfacial entropy per area decreases to zero. Systems with small values of excess interfacial entropy form multi-molecular layers at the interface instead of the monolayer formed by systems with much larger excess interfacial entropy. Substitution of n-hexane by n-hexadecane significantly alters the interfacial structure for a given alkanol surfactant, but this substitution does not change fundamentally the phase transition behavior of the monolayers. These data show that the critical alkanol carbon number, at which the change in excess interfacial entropy per area decreases to zero, is approximately six carbons larger than the number of carbons in the alkane solvent molecules.Comment: 27 pages, 10 figures, to be published in J. Phys. Cond. Ma
    • …
    corecore