125 research outputs found
Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles
Most aspects of nervous system development and function rely on the continuous crosstalk between neurons and the variegated universe of non-neuronal cells surrounding them. The most extraordinary property of this cellular community is its ability to undergo adaptive modifications in response to environmental cues originating from inside or outside the body. Such ability, known as neuronal plasticity, allows long-lasting modifications of the strength, composition and efficacy of the connections between neurons, which constitutes the biochemical base for learning and memory. Nerve cells communicate with each other through both wiring (synaptic) and volume transmission of signals. It is by now clear that glial cells, and in particular astrocytes, also play critical roles in both modes by releasing different kinds of molecules (e.g., D-serine secreted by astrocytes). On the other hand, neurons produce factors that can regulate the activity of glial cells, including their ability to release regulatory molecules. In the last fifteen years it has been demonstrated that both neurons and glial cells release extracellular vesicles (EVs) of different kinds, both in physiologic and pathological conditions. Here we discuss the possible involvement of EVs in the events underlying learning and memory, in both physiologic and pathological condition
Il criterio base di valutazione del costo storico e del fair value nei processi di valutazione del bilancio d’esercizio: prime proposizioni
Il lavoro ha l'obiettivo di riflettere sul ruolo del costo storico e del fair value nel processo di valutazione delle immobilizzazioni tecniche materiali ed immateriali. La riflessione si sviluppa contestualizzando all'attuale stato dell'arte delle imprese tali tematich
Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review).
Post-transcriptional control of mRNA trafficking and metabolism plays a critical role in the actualization and fine tuning of the genetic program of cells, both in development and in differentiated tissues. Cis-acting signals, responsible for post-transcriptional regulation, reside in the RNA message itself, usually in untranslated regions, 5' or 3' to the coding sequence, and are recognized by trans-acting factors: RNA-binding proteins (RBPs) and/or non-coding RNAs (ncRNAs). ncRNAs bind short mRNA sequences usually present in the 3'-untranslated (3'-UTR) region of their target messages. RBPs recognize specific nucleotide sequences and/or secondary/tertiary structures. Most RBPs assemble on mRNA at the moment of transcription and shepherd it to its destination, somehow determining its final fate. Regulation of mRNA localization and metabolism has a particularly important role in the nervous system where local translation of pre-localized mRNAs has been implicated in developing axon and dendrite pathfinding, and in synapse formation. Moreover, activity-dependent mRNA trafficking and local translation may underlie long-lasting changes in synaptic efficacy, responsible for learning and memory. This review focuses on the role of RBPs in neuronal development and plasticity, as well as possible connections between ncRNAs and RBPs
Involvement of the H3.3 Histone Variant in the Epigenetic Regulation of Gene Expression in the Nervous System, in Both Physiological and Pathological Conditions
All the cells of an organism contain the same genome. However, each cell expresses only a minor fraction of its potential and, in particular, the genes encoding the proteins necessary for basal metabolism and the proteins responsible for its specific phenotype. The ability to use only the right and necessary genes involved in specific functions depends on the structural organization of the nuclear chromatin, which in turn depends on the epigenetic history of each cell, which is stored in the form of a collection of DNA and protein modifications. Among these modifications, DNA methylation and many kinds of post-translational modifications of histones play a key role in organizing the complex indexing of usable genes. In addition, non-canonical histone proteins (also known as histone variants), the synthesis of which is not directly linked with DNA replication, are used to mark specific regions of the genome. Here, we will discuss the role of the H3.3 histone variant, with particular attention to its loading into chromatin in the mammalian nervous system, both in physiological and pathological conditions. Indeed, chromatin modifications that mark cell memory seem to be of special importance for the cells involved in the complex processes of learning and memory
Genomic and non-genomic mechanisms of action of thyroid hormones and their catabolite 3,5-diiodo-l-thyronine in Mammals
Since the realization that the cellular homologs of a gene found in the retrovirus that
contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear
receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to
control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues,
these hormones could mediate critical events both in development and in adult organisms. Among
their eects, much attention was given to their ability to increase energy expenditure, and they were
early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the
concomitant onset of toxic eects, especially on the heart. Notably, it has been clearly demonstrated
that, besides their direct action on transcription (genomic eects), THs also have non-genomic eects,
mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their
endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been
attracting increasing interest because some of its metabolic eects are similar to those induced by
T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has
been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2
might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while
concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides.
Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic
eects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2,
also in relation to its possible clinical use as a drug
Role of Extracellular Vesicles in the Progression of Brain Tumors
Brain tumors, and, in particular, glioblastoma (GBM), are among the most aggressive forms of cancer. In spite of the advancement in the available therapies, both diagnosis and treatments are still unable to ensure pathology-free survival of the GBM patients for more than 12-15 months. At the basis of the still poor ability to cope with brain tumors, we can consider: (i) intra-tumor heterogeneity; (ii) heterogeneity of the tumor properties when we compare different patients; (iii) the blood-brain barrier (BBB), which makes difficult both isolation of tumor-specific biomarkers and delivering of therapeutic drugs to the brain. Recently, it is becoming increasingly clear that cancer cells release large amounts of extracellular vesicles (EVs) that transport metabolites, proteins, different classes of RNAs, DNA, and lipids. These structures are involved in the pathological process and characterize any particular form of cancer. Moreover, EVs are able to cross the BBB in both directions. Starting from these observations, researchers are now evaluating the possibility to use EVs purified from organic fluids (first of all, blood and saliva), in order to obtain, through non-invasive methods (liquid biopsy), tumor biomarkers, and, perhaps, also for obtaining nanocarriers for the targeted delivering of drugs
Neuronal and BBB damage induced by sera from patients with secondary progressive multiple sclerosis
An important component of the pathogenic process of multiple sclerosis (MS) is the blood-brain barrier (BBB) damage. We recently set an in vitro model of BBB, based on a three-cell-type co-culture system, in which rat neurons and astrocytes synergistically induce brain capillary endothelial cells to form a monolayer with permeability properties resembling those of the physiological BBB. Herein we report that the serum from patients with secondary progressive multiple sclerosis (SPMS) has a damaging effect on isolated neurons. This finding suggests that neuronal damaging in MS could be a primary event and not only secondary to myelin damage, as generally assumed. SPMS serum affects the permeability of the BBB model, as indicated by the decrease of the transendothelial electrical resistance (TEER). Moreover, as shown by both immunofluorescence and Western blot analyses, BBB breaking is accompanied by a decrease of the synthesis as well as the peripheral localization of occludin, a structural protein of the tight junctions that are responsible for BBB properties
Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood-Brain Barrier
: The blood-brain barrier (BBB) is a fundamental structure that protects the composition of the brain by determining which ions, metabolites, and nutrients are allowed to enter the brain from the blood or to leave it towards the circulation. The BBB is structurally composed of a layer of brain capillary endothelial cells (BCECs) bound to each other through tight junctions (TJs). However, its development as well as maintenance and properties are controlled by the other brain cells that contact the BCECs: pericytes, glial cells, and even neurons themselves. Astrocytes seem, in particular, to have a very important role in determining and controlling most properties of the BBB. Here, we will focus on these latter cells, since the comprehension of their roles in brain physiology has been continuously expanding, even including the ability to participate in neurotransmission and in complex functions such as learning and memory. Accordingly, pathological conditions that alter astrocytic functions can alter the BBB's integrity, thus compromising many brain activities. In this review, we will also refer to different kinds of in vitro BBB models used to study the BBB's properties, evidencing its modifications under pathological conditions
Lactate as a Metabolite and a Regulator in the Central Nervous System
More than two hundred years after its discovery, lactate still remains an intriguing molecule. Considered for a long time as a waste product of metabolism and the culprit behind muscular fatigue, it was then recognized as an important fuel for many cells. In particular, in the nervous system, it has been proposed that lactate, released by astrocytes in response to neuronal activation, is taken up by neurons, oxidized to pyruvate and used for synthesizing acetyl-CoA to be used for the tricarboxylic acid cycle. More recently, in addition to this metabolic role, the discovery of a specific receptor prompted a reconsideration of its role, and lactate is now seen as a sort of hormone, even involved in processes as complex as memory formation and neuroprotection. As a matter of fact, exercise offers many benefits for our organisms, and seems to delay brain aging and neurodegeneration. Now, exercise induces the production and release of lactate into the blood which can reach the liver, the heart, and also the brain. Can lactate be a beneficial molecule produced during exercise, and offer neuroprotection? In this review, we summarize what we have known on lactate, discussing the roles that have been attributed to this molecule over time
- …