4,101 research outputs found

    Quantitative photoacoustic tomography with piecewise constant material parameters

    Full text link
    The goal of quantitative photoacoustic tomography is to determine optical and acoustical material properties from initial pressure maps as obtained, for instance, from photoacoustic imaging. The most relevant parameters are absorption, diffusion and Grueneisen coefficients, all of which can be heterogeneous. Recent work by Bal and Ren shows that in general, unique reconstruction of all three parameters is impossible, even if multiple measurements of the initial pressure (corresponding to different laser excitation directions at a single wavelength) are available. Here, we propose a restriction to piecewise constant material parameters. We show that in the diffusion approximation of light transfer, piecewise constant absorption, diffusion and Gr\"uneisen coefficients can be recovered uniquely from photoacoustic measurements at a single wavelength. In addition, we implemented our ideas numerically and tested them on simulated three-dimensional data

    A multi-level algorithm for the solution of moment problems

    Full text link
    We study numerical methods for the solution of general linear moment problems, where the solution belongs to a family of nested subspaces of a Hilbert space. Multi-level algorithms, based on the conjugate gradient method and the Landweber--Richardson method are proposed that determine the "optimal" reconstruction level a posteriori from quantities that arise during the numerical calculations. As an important example we discuss the reconstruction of band-limited signals from irregularly spaced noisy samples, when the actual bandwidth of the signal is not available. Numerical examples show the usefulness of the proposed algorithms
    • …
    corecore