30 research outputs found

    Occurrence and Functions of PACAP in the Placenta

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide with a widespread distribution both in the nervous system and peripheral organs. The peptide is also present in the female gonadal system, indicating its role in reproductive functions. While a lot of data are known on PACAP-induced effects in oogenesis and in the regulation of gonadotropin secretion at pituitary level, its placental effects are somewhat neglected in spite of the documented implantation deficit in mice lacking endogenous PACAP. The aim of the present review is to give a brief summary on the occurrence and actions of PACAP and its receptors in the placenta. Radioimmunoassay (RIA) measurements revealed increased serum PACAP levels during the third trimester and several changes in placental PACAP content in obstetrical pathological conditions, further supporting the function of PACAP during pregnancy. Both the peptide and its receptors have been shown in different parts of the placenta and the umbilical cord. PACAP influences blood vessel and smooth muscle contractility of the uteroplacental unit and is involved in regulation of local hormone secretion. The effects of PACAP on trophoblast cells have been mainly studied in vitro. Effects of PACAP on cell survival, angiogenesis and invasion/proliferation have been described in different trophoblast cell lines. PACAP increases proliferation and decreases invasion in proliferative extravillous trophoblast cells, but not in primary trophoblast cells, where PACAP decreased the secretion of various angiogenic markers. PACAP pretreatment enhances survival of non-tumorous primary trophoblast cells exposed to oxidative stress, but it does not influence the cell death-inducing effects of methotrexate in proliferative extravillous cytotrophoblast cells. Interestingly, PACAP has pro-apoptotic effect in choriocarcinoma cells suggesting that the effect of PACAP depends on the type of trophoblast cells. These data strongly support that PACAP plays a role in normal and pathological pregnancies and our review provides an overview of currently available experimental data worth to be further investigated to elucidate the exact role of this peptide in the placenta

    Adhesion molecules for mouse primordial germ cells

    No full text
    In the present article we will focus on the adhesion molecules expressed by mouse primordial germ cells (PGCs) and will discuss the role that they play, or are believed to play, in two crucial processes of PGC development, namely cell lineage specification and migration into the gonadal ridges. Recent findings indicate that the adhesion-dependent allocation of the PGC precursors to a niche within the epiblast and the forming extraembryonic mesoderm during the pre-gastrulation period is crucial for their commitment. Subsequently, PGC migration and homing within the gonadal ridges require integrated signals involving contact of PGCs with extracellular matrix molecules and cellular substrates or repulsion from them, adhesion among PGCs themselves and attraction by the developing gonads. A number of adhesion, or putative adhesion molecules, have been identified in mammalian PGCs, mainly in the mouse. These molecules belong to three adhesion molecule families such as cadherins (E-P- and N-cadherins), integrins and the IgG superfamily (PECAM-1). Moreover oligosaccarides (LewisX) and growth factor receptors (c-Kit) can also play adhesive roles in some stages of PGC development. An understanding of how genes encoding adhesive molecules are regulated in PGCs and the molecular pathways associated with the functions of adhesion receptors is crucial in furthering our knowledge of PGC biology. Adhesion molecules might once again turn out to be crucial in controlling not only the germ cell lineage and PGC migration but also the PGC differentiation fate itself

    Growth factors sustain primordial germ cell survival, proliferation and entering into meiosis in the absence of somatic cells

    No full text
    It is known that mammalian primordial germ cells (PGCs), the precursors of oocytes and prospermatogonia, depend for survival and proliferation on specific growth factors and other undetermined compounds. Adhesion to neighboring somatic cells is also believed to be crucial for preventing PGC apoptosis occurring when they loss appropriate cell to cell contacts. This explains the current impossibility to maintain isolated mouse PGCs in culture for periods longer than a few hours in the absence of suitable cell feeder layers producing soluble factors and expressing surface molecules necessary for preventing PGC apoptosis and stimulating their proliferation. In the present paper, we identified a cocktail of soluble growth factors, namely KL, LIF, BMP-4, SDF-1, bFGF and compounds (N-acetyl-L-cysteine, forskolin, retinoic acid) able to sustain the survival and self-renewal of mouse PGCs in the absence of somatic cell support. We show that under culture conditions allowing PGC adhesion to an acellular substrate, such growth factors and compounds were able to prevent the occurrence of significant levels of apoptosis in PGCs for 2 days, stimulate their proliferation and, when LIF was omitted from the cocktail, allow most of them to enter into and progress through meiotic prophase I. These results consent for the first time to establish culture conditions for purified mammalian PGCs in the absence of somatic cell support and should make easier the molecular dissection of the processes governing the development of such cells crucial for early gametogenesis. (c) 2005 Elsevier Inc. All rights reserved

    Analysis of programmed cell death in mouse fetal oocytes.

    No full text
    We report a short-term culture system that allows to define novel characteristic of programmed cell death (PCD) in fetal oocytes and to underscore new aspects of this process. Mouse fetal oocytes cultured in conditions allowing meiotic prophase I progression underwent apoptotic degeneration waves as revealed by TUNEL staining. TEM observations revealed recurrent atypical apoptotic morphologies characterized by the absence of chromatin margination and nuclear fragmentation; oocytes with autophagic and necrotic features were also observed. Further characterization of oocyte death evidenced DNA ladder, Annexin V binding, PARP cleavage, and usually caspase activation (namely caspase-2). In the aim to modulate the oocyte death process, we found that the addition to the culture medium of the pan-caspase inhibitors Z-VAD or caspase-2-specific inhibitor Z-VDVAD resulted in a partial and transient prevention of this process. Oocyte death was significantly reduced by the antioxidant agent NAC and partly prevented by KL and IGF-I growth factors. Finally, oocyte apoptosis was reduced by calpain inhibitor I and increased by rapamycin after prolonged culture. These results support the notion that fetal oocytes undergo degeneration mostly by apoptosis. This process is, however, often morphologically atypical and encompasses other forms of cell death including caspase-independent apoptosis and autophagia. The observation that oocyte death occurs mainly at certain stages of meiosis and can only be attenuated by typical anti-apoptotic treatments favors the notion that it is controlled at least in part by stage-specific oocyte-autonomous meiotic checkpoints and when activated is little amenable to inhibition being the oocyte able to switch back and forth among different death pathways

    Establishment of oocyte population in the fetal ovary: primordial germ cell proliferation and oocyte programmed cell death

    No full text
    Strict control of cell proliferation and cell loss is essential for the coordinated functions of different cell populations in complex multicellular organisms. Oogenesis is characterized by a first phase occurring during embryo-fetal life and in common with spermatogenesis, during which mitotic proliferation of the germline stem cells, the primordial germ cells (PGC), prevails over germ cell death. The result is the formation of a relatively high number of germ cells depending on the species, ready to enter sex specific differentiation. In the female, PGC enter into meiosis and become oocytes, thereby ending their stem cell potential. After entering into meiosis in the fetal ovary, oocytes pass through leptotene, zygotene and pachytene stages before arresting in the last stage of meiotic prophase I, the diplotene or dictyate stage at about the time of birth. The most part of oocytes die during the fetal period or shortly after birth. It is widely accepted that in mammals a female is born with a fixed number of oocytes within the ovaries, which over the years progressively decreases without possibility for renewal. Once the oocyte reserve has been exhausted, ovarian senescence, driving what is referred to as the menopause in women, rapidly ensues. The fertile lifespan of a female depends by the size of the oocyte pool at birth and the rapidity of the oocyte pool depletion. Which mechanisms control PGC proliferation? Why do most of the oocytes die during fetal life and what are the mechanisms of such massive degeneration? Is it possible to prolong the lifespan of a female by reducing oocyte lost during the fetal life? This review reports some of the most recent results obtained in an attempt to answer these questions

    Establishment of oocyte population in the fetal ovary: primordial germ cell proliferation and oocyte programmed cell death

    No full text
    Strict control of cell proliferation and cell loss is essential for the coordinated functions of different cell populations in complex multicellular organisms. Oogenesis is characterized by a first phase occurring during embryo-fetal life and in common with spermatogenesis, during which mitotic proliferation of the germline stem cells, the primordial germ cells (PGC), prevails over germ cell death. The result is the formation of a relatively high number of germ cells depending on the species, ready to enter sex specific differentiation. In the female, PGC enter into meiosis and become oocytes, thereby ending their stem cell potential. After entering into meiosis in the fetal ovary, oocytes pass through leptotene, zygotene and pachytene stages before arresting in the last stage of meiotic prophase I, the diplotene or dictyate stage at about the time of birth. The most part of oocytes die during the fetal period or shortly after birth. It is widely accepted that in mammals a female is born with a fixed number of oocytes within the ovaries, which over the years progressively decreases without possibility for renewal. Once the oocyte reserve has been exhausted, ovarian senescence, driving what is referred to as the menopause in women, rapidly ensues. The fertile lifespan of a female depends by the size of the oocyte pool at birth and the rapidity of the oocyte pool depletion. Which mechanisms control PGC proliferation? Why do most of the oocytes die during fetal life and what are the mechanisms of such massive degeneration? Is it possible to prolong the lifespan of a female by reducing oocyte lost during the fetal life? This review reports some of the most recent results obtained in an attempt to answer these questions

    Thyroid hormone effects on mouse oocyte maturation and granulosa cell aromatase activity

    No full text
    In the present study we evaluated the role of T-3 on the in vitro processes of mouse cumulus cell-oocyte complex expansion, oocyte meiotic maturation, and granulosa cell aromatase activity. Results obtained from cumuli oophori isolated from immature and adult mice ovaries demonstrated that T-3 at all concentrations tested (0.1-100 nM) did not affect basal or FSH-induced cumulus expansion or interfere with oocyte meiotic maturation up to metaphase II stage. On the contrary, T-3 inhibited in a time- and dose-dependent manner FSH-induced aromatase activity in cultured granulosa cells obtained from either adult or immature female mice. The half-maximal dose (ED50) of T-3 inhibition was 0.87 +/- 0.21 nM, which is in agreement with the reported dissociation constant of T-3 nuclear receptor (K-d = 0.4-5 nM) in mammalian granulosa cells. Time-course experiments demonstrated higher sensitivity to T-3 of adult granulosa cells with respect to immature granulosa cells in culture. Indeed, in immature granulosa cells T-3 inhibition became significantly evident only after 6 days of hormonal treatment, whereas in adult granulosa cells the inhibitory effect was present after only 2 days of treatment. (Bu)(2)cAMP- or 3-isobutyl-1-methyl-xanthine-stimulated aromatase activity was also significantly decreased by T-3, thus suggesting that the inhibition was downstream from cAMP formation. Lastly, analysis of aromatase messenger RNA (mRNA) levels by semiquantitative RT-PCR demonstrated the ability of FSH to increase aromatase mRNA level in cultured granulosa cells by 2.4 +/- 0.5-fold. In agreement with the effect on enzyme activity, the stimulatory effect of FSH on aromatase mRNA level was greatly reduced after T-3 cotreatment. In conclusion, T-3 inhibition of aromatase activity may be of physiological relevance in the complex multihormonal regulation of mammalian follicle development and may contribute to explaining the alteration in female reproductive functions after thyroid hormone hypo- or hypersecretion
    corecore