73 research outputs found

    Interconnection network architectures based on integrated orbital angular momentum emitters

    Get PDF
    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance

    Photonic Combinatorial Network for Contention Management in 160 Gb/s Interconnection Networks based on All-Optical 2x2 Switching Elements

    Get PDF
    A modular photonic interconnection network based on a combination of basic 2×2 all-optical nodes including a photonic combinatorial network for the packet contention management is presented. The proposed architecture is synchronous, can handle optical time division multiplexed (OTDM) packets up to 160 Gb/s, exhibits self-routing capability, and very low switching latency. In such a scenario, OTDM has to be preferred to wavelength division multiplexing (WDM) because in the former case, the instantaneous packet power carries the information related to only one bit, making the signal processing based on instantaneous nonlinear interactions between packets and control signals more efficient. Moreover, OTDM can be used in interconnection networks without caring about the propagation impairments because of the very short length (< 100 m) of the links in these networks. For such short-range networks, the packet synchronization can be solved at the network boundary in the electronic domain without the need of complex optical synchronizers. In this paper, we focus on a photonic combinatorial network able to detect the contentions, and to optically drive the contention resolution block and the switching control block. The implementation of the photonic combinatorial network is based on semiconductor devices, which makes the solution very promising in terms of compactness, stability, and power consumption. This implementation represents the first example of complex photonic combinatorial network for ultrafast digital processing. The network performance has been investigated for bit streams at 10 Gb/s in terms of bit error rate (BER) and contrast ratio. Moreover, the suitability of the 2×2 photonic node architecture exploiting the earlier mentioned combinatorial network has been verified at a bit rate up to 160 Gb/s. In this way, the potential of photonic digital processing for the next generation broad band and flexible interconnection networks has been demonstrated

    Multiplane Orbital Angular Momentum and Wavelength Switch based on Integrated Tunable Vortex Emitters

    Get PDF
    A multiplane switch architecture exploiting OAM and wavelength domains is characterized in terms of BER, scheduling/reconfiguration latency, and power consumption. Doubling the exploited OAM modes reduces the latency by 42% and the power by 17%

    A fully photonics-based coherent radar system

    Get PDF
    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system

    10 OAM × 16 Wavelengths Two-Layer Switch Based on an Integrated Mode Multiplexer for 19.2 Tb/s Data Traffic

    Get PDF
    A two-layer switch exploiting orbital angular momentum (OAM) and wavelength of the light as switching domains is presented, aiming to increase the scalability with respect to the single-layer switches. The switch is able to accept 160 optical Gaussian data inputs on a 16-channel wavelength division multiplexing (WDM) grid and direct each input signals to different output ports exploiting 10 OAMs. The optical switch is based on an integrated OAM multiplexer followed by a compact OAM demultiplexer consisting of two refractive elements. Its experimental characterization confirmed a total enabled throughput of 19.2 Tb/s, thanks to the 30 GHz bandwidth available for each port. The switching time can be lower than 1 μs. The OAM switch power consumption, solely due to the thermal tuning of the OAM emitters, since the OAM demux is passive, is 1.35 mW/Gb/s. In the proposed switching architecture the number of active components, i.e., the power consumption, scales linear with the number of ports. This is favorable in comparison with single-layer switches that cascade e.g., 2 × 2 elementary blocks to obtain large port counts, which scale with the square of the number of ports. The switch accepts input and output signals with Gaussian phase profile that propagate through optical fibers and waveguides, thus making it compatible with standard telecom devices. The suitability of the switch to support real data-traffic is proved by successfully testing it with 10G Ethernet and fiber channel over Ethernet (FCoE) data and video traffic. A possible application scenario is represented by a data-center network where the switch can be used to create a low-power consumption network parallel to the network based on standard electronic routers, to manage large traffic flows

    NRZ/RZ 40 Gbit/s optical regenerator based on a photonic two-level nonlinear device

    No full text
    A compact device with a two-level transfer function (TF) implemented with two semiconductor optical amplifier (SOA)-based stages is proposed and characterized. Each stage exploits nonlinear polarization rotation and self-phase modulation. The obtained improved TF with very flat top and bottom levels makes the scheme suitable for working as a reshaper in all-optical regeneration. The effectiveness of the device is verified in regenerating both nonreturn-to-zero (NRZ) and return-to-zero (RZ) data signals up to 40 Gb/s. Bit error rate measurements demonstrate increased threshold margin and extinction ratio improvement
    • …
    corecore