13 research outputs found
Increased aortic stiffness and blood pressure in non-classic Pompe disease
Vascular abnormalities and glycogen accumulation in vascular smooth muscle fibres have been described in Pompe disease. Using carotid-femoral pulse wave velocity (cfPWV), the gold standard methodology for determining aortic stiffness, we studied whether aortic stiffness is increased in patients with Pompe disease. Eighty-four adult Pompe patients and 179 age- and gender-matched volunteers participated in this cross-sectional case-controlled study. Intima media thickness and the distensibility of the right common carotid artery were measured using a Duplex scanner. Aortic augmentation index, central pulse pressure, aortic reflexion time and cfPWV were assessed using the SphygmoCor® system. CfPWV was higher in patients than in volunteers (8.8 versus 7.4 m/s, p < 0.001). This difference was still present after adjustment for age, gender, mean arterial blood pressure (MAP), heart rate and diabetes mellitus (p = 0.001), and was shown by subgroup analysis to apply to the 40-59 years age group (p = 0.004) and 60+ years age group (p = 0.01), but not to younger age groups (p = 0.99). Except for a shorter aortic reflexion time (p = 0.02), indirect indicators of arterial stiffness did not differ between patients and volunteers. Relative to volunteers (20 %), more Pompe patients had a history of hypertension (36 %, p = 0.005), and the MAP was higher than in volunteers (100 versus 92 mmHg, p < 0.001). This study shows that patients with non-classic Pompe disease have increased aortic stiffness and blood pressure. Whether this is due to glycogen accumulation requires further investigation. To reduce the potential risk of cardiovascular diseases, we recommend that blood pressure and other common cardiovascular risk factors are monitored regularly
The electrophysiological connectome is maintained in healthy elders: a power envelope correlation MEG study
Functional magnetic resonance imaging (fMRI) studies report age-related changes in resting-state functional connectivity (rsFC), suggesting altered or reorganized connectivity patterns with age. However, age-related changes in neurovascular coupling might also partially account for altered connectivity patterns. Here, we used resting-state magnetoencephalography (MEG) and a connectome approach in carefully selected healthy young adults and elders. The MEG connectome was estimated as rsFC matrices involving forty nodes from six major resting-state networks. Source-level rsFC maps were computed in relevant frequency bands using leakage-corrected envelope correlations. Group differences were statistically assessed using non-parametric permutation tests. Our results failed to evidence significant age-related differences after correction for multiple comparisons in the α and the β bands both for static and dynamic rsFC, suggesting that the electrophysiological connectome is maintained in healthy ageing. Further studies should compare the evolution of the human brain connectome as estimated using fMRI and MEG in same healthy young and elder adults, as well as in ageing conditions associated with cognitive decline. At present, our results are in agreement with the brain maintenance theory for successful aging as they suggest that preserved intrinsic functional brain integration contributes to preserved cognitive functioning in healthy elders.SCOPUS: ar.jinfo:eu-repo/semantics/publishe