1,755 research outputs found

    Basonuclin-Null Mutation Impairs Homeostasis and Wound Repair in Mouse Corneal Epithelium

    Get PDF
    At least two cellular processes are required for corneal epithelium homeostasis and wound repair: cell proliferation and cell-cell adhesion. These processes are delicately balanced to ensure the maintenance of normal epithelial function. During wound healing, these processes must be reprogrammed in coordination to achieve a rapid re-epithelialization. Basonuclin (Bnc1) is a cell-type-specific transcription factor expressed mainly in the proliferative keratinocytes of stratified epithelium (e.g., corneal epithelium, epidermis and esophageal epithelium) and the gametogenic cells in testis and ovary. Our previous work suggested that basonuclin could regulate transcription of ribosomal RNA genes (rDNA) and genes involved in chromatin structure, transcription regulation, cell-cell junction/communication, ion-channels and intracelllular transportation. However, basonuclin's role in keratinocytes has not been demonstrated in vivo. Here we show that basonuclin-null mutation disrupts corneal epithelium homeostasis and delays wound healing by impairing cell proliferation. In basonuclin-null cornea epithelium, RNA polymerase I (Pol I) transcription is perturbed. This perturbation is unique because it affects transcripts from a subset of rDNA. Basonuclin-null mutation also perturbs RNA polymerase II (Pol II) transcripts from genes encoding chromatin structure proteins histone 3 and HMG2, transcription factor Gli2, gap-junction protein connexin 43 and adheren E-cadherin. In most cases, a concerted change in mRNA and protein level is observed. However, for E-cadherin, despite a notable increase in its mRNA level, its protein level was reduced. In conclusion, our study establishes basonuclin as a regulator of corneal epithelium homeostasis and maintenance. Basonuclin likely coordinates functions of a subset of ribosomal RNA genes (rDNA) and a group of protein coding genes in cellular processes critical for the regulation of cell proliferation

    Betel nut chewing and incidence of newly diagnosed type 2 diabetes mellitus in Taiwan.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Betel nut chewing is associated with type 2 diabetes mellitus (T2DM) in a recent prevalence study in Taiwan. The present study further investigated its link with the incidence of newly diagnosed T2DM during the years 1992-1996.</p> <p>Methods</p> <p>Population-based datasets of a sample of 93,484 out of 256,036 diabetic patients from 66 medical settings using the National Health Insurance scheme covering > 96% of the population, published population prevalence of betel nut chewing and the governmental census of national population were used for calculation of odds ratios, incidence rates and incidence rate ratios between chewers and never-chewers in the male population for the year 1992 to 1996.</p> <p>Results</p> <p>Ever chewers among the diabetic patients were younger, more obese and had higher prevalence of parental diabetes than never-chewers (all <it>p </it>values < 0.001). Odds ratios for T2DM for ever chewers vs. never-chewers in the age of < 40, 40-49, 50-59, 60-69 and ≥70 years were 1.06 (0.92-1.23), 1.60 (1.45-1.76), 2.12 (1.88-2.39), 3.58 (3.10-4.13) and 7.14 (5.47-9.31), respectively. In 1996, incidence rates (per 100,000 population) in the respective age groups were 19.1, 251.5, 567.3, 721.7 and 971.4 for never-chewers; and were 30.2, 520.9, 2566.9, 11672.8 and 630.3 for ever chewers. The respective incidence rate ratios were 1.58, 2.07, 4.52, 16.17 and 0.65. The age-specific incidence rates and rate ratios were relatively consistent from 1992 to 1996. The differences in obesity and parental diabetes between ever chewers and never-chewers were mostly not statistically significant after age stratification, suggesting the link could not be attributed to these two factors.</p> <p>Conclusions</p> <p>Chewing betel nut is associated with newly diagnosed T2DM, supporting the suggestion that the habit is diabetogenic.</p

    Crown Lengthening Revisited

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141178/1/cap0233.pd

    GWAS for discovery and replication of genetic loci associated with sudden cardiac arrest in patients with coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiologic evidence suggests a heritable component to risk for sudden cardiac arrest independent of risk for myocardial infarction. Recent candidate gene association studies for community sudden cardiac arrests have focused on a limited number of biological pathways and yielded conflicting results. We sought to identify novel gene associations for sudden cardiac arrest in patients with coronary artery disease by performing a genome-wide association study.</p> <p>Methods</p> <p>Tagging SNPs (n = 338,328) spanning the genome were typed in a case-control study comparing 89 patients with coronary artery disease and sudden cardiac arrest due to ventricular tachycardia or ventricular fibrillation to 520 healthy controls.</p> <p>Results</p> <p>Fourteen SNPs including 7 SNPs among 7 genes (ACYP2, AP1G2, ESR1, DGES2, GRIA1, KCTD1, ZNF385B) were associated with sudden cardiac arrest (all p < 1.30 × 10<sup>-7</sup>), following Bonferroni correction and adjustment for population substructure, age, and sex; genetic variation in ESR1 (p = 2.62 × 10<sup>-8</sup>; Odds Ratio [OR] = 1.43, 95% confidence interval [CI]:1.277, 1.596) has previously been established as a risk factor for cardiovascular disease. In tandem, the role of 9 genes for monogenic long QT syndrome (LQT1-9) was assessed, yielding evidence of association with CACNA1C (LQT8; p = 3.09 × 10<sup>-4</sup>; OR = 1.18, 95% CI:1.079, 1.290). We also assessed 4 recently published gene associations for sudden cardiac arrest, validating NOS1AP (p = 4.50 × 10<sup>-2</sup>, OR = 1.15, 95% CI:1.003, 1.326), CSMD2 (p = 6.6 × 10<sup>-3</sup>, OR = 2.27, 95% CI:1.681, 2.859), and AGTR1 (p = 3.00 × 10<sup>-3</sup>, OR = 1.13, 95% CI:1.042, 1.215).</p> <p>Conclusion</p> <p>We demonstrate 11 gene associations for sudden cardiac arrest due to ventricular tachycardia/ventricular fibrillation in patients with coronary artery disease. Validation studies in independent cohorts and functional studies are required to confirm these associations.</p

    Conjunctival Reconstruction with Progenitor Cell-Derived Autologous Epidermal Sheets in Rhesus Monkey

    Get PDF
    Severe ocular surface diseases are some of the most challenging problems that the clinician faces today. Conventional management is generally unsatisfactory, and the long-term ocular consequences of these conditions are devastating. It is significantly important to find a substitute for conjunctival epithelial cells. This study was to explore the possibility of progenitor cell-derived epidermal sheets on denuded amniotic membrane to reconstruct ocular surface of conjunctiva damaged monkeys. We isolated epidermal progenitor cells of rhesus monkeys by type IV collagen adhesion, and then expanded progenitor cell-derived epidermal sheets on denuded amniotic membrane ex vivo. At 3 weeks after the conjunctiva injury, the damaged ocular surface of four monkeys was surgically reconstructed by transplanting the autologous cultivated epidermal progenitor cells. At 2 weeks after surgery, transplants were removed and examined with Hematoxylin-eosin staining, Periodic acid Schiff staining, immunofluorescent staining, scanning and transmission electron microscopy. Histological examination of transplanted sheets revealed that the cell sheets were healthy alive, adhered well to the denuded amniotic membrane, and had several layers of epithelial cells. Electron microscopy showed that the epithelial cells were very similar in appearance to those of normal conjunctival epithelium, even without goblet cell detected. Epithelial cells of transplants had numerous desmosomal junctions and were attached to the amniotic membrane with hemidesmosomes. Immunohistochemistry confirmed the presence of the conjunctival specific markers, mucin 4 and keratin 4, in the transplanted epidermal progenitor cells. In conclusion, our present study successfully reconstructed conjunctiva with autologous transplantation of progenitor cell-derived epidermal sheets on denuded AM in conjunctival damaged monkeys, which is the first step toward assessing the use of autologous transplantation of progenitor cells of nonocular surface origin. Epidermal progenitor cells could be provided as a new substitute for conjunctival epithelial cells to overcome the problems of autologous conjunctiva shortage

    Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    Get PDF
    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5–14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1×104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87–2.41×106 cells) in 12–14 days, representing 187–241 fold expansion with over 7–8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction
    corecore