14 research outputs found

    Combinatorial Modeling of Chromatin Features Quantitatively Predicts DNA Replication Timing in <i>Drosophila</i>

    Get PDF
    <div><p>In metazoans, each cell type follows a characteristic, spatio-temporally regulated DNA replication program. Histone modifications (HMs) and chromatin binding proteins (CBPs) are fundamental for a faithful progression and completion of this process. However, no individual HM is strictly indispensable for origin function, suggesting that HMs may act combinatorially in analogy to the histone code hypothesis for transcriptional regulation. In contrast to gene expression however, the relationship between combinations of chromatin features and DNA replication timing has not yet been demonstrated. Here, by exploiting a comprehensive data collection consisting of 95 CBPs and HMs we investigated their combinatorial potential for the prediction of DNA replication timing in <i>Drosophila</i> using quantitative statistical models. We found that while combinations of CBPs exhibit moderate predictive power for replication timing, pairwise interactions between HMs lead to accurate predictions genome-wide that can be locally further improved by CBPs. Independent feature importance and model analyses led us to derive a simplified, biologically interpretable model of the relationship between chromatin landscape and replication timing reaching 80% of the full model accuracy using six model terms. Finally, we show that pairwise combinations of HMs are able to predict differential DNA replication timing across different cell types. All in all, our work provides support to the existence of combinatorial HM patterns for DNA replication and reveal cell-type independent key elements thereof, whose experimental investigation might contribute to elucidate the regulatory mode of this fundamental cellular process.</p></div

    Guidelines for Setting Up a mRNA Sequencing Experiment and Best Practices for Bioinformatic Data Analysis

    No full text
    RNA-sequencing, commonly referred to as RNA-seq, is the most recently developed method for the analysis of transcriptomes. It uses high-throughput next-generation sequencing technologies and has revolutionized our understanding of the complexity and dynamics of whole transcriptomes.In this chapter, we recall the key developments in transcriptome analysis and dissect the different steps of the general workflow that can be run by users to design and perform a mRNA-seq experiment as well as to process mRNA-seq data obtained by the Illumina technology. The chapter proposes guidelines for completing a mRNA-seq study properly and makes available recommendations for best practices based on recent literature and on the latest developments in technology and algorithms. We also remark the large number of choices available (especially for bioinformatic data analysis) in front of which the scientist may be in trouble.In the last part of the chapter we discuss the new frontiers of single-cell RNA-seq and isoform sequencing by long read technology
    corecore