29 research outputs found

    Structure and Dynamics of the G121V Dihydrofolate Reductase Mutant: Lessons from a Transition-State Inhibitor Complex

    Get PDF
    It is well known that enzyme flexibility is critical for function. This is due to the observation that the rates of intramolecular enzyme motions are often matched to the rates of intermolecular events such as substrate binding and product release. Beyond this role in progression through the reaction cycle, it has been suggested that enzyme dynamics may also promote the chemical step itself. Dihydrofolate reductase (DHFR) is a model enzyme for which dynamics have been proposed to aid in both substrate flux and catalysis. The G121V mutant of DHFR is a well studied form that exhibits a severe reduction in the rate of hydride transfer yet there remains dispute as to whether this defect is caused by altered structure, dynamics, or both. Here we address this by presenting an NMR study of the G121V mutant bound to reduced cofactor and the transition state inhibitor, methotrexate. NMR chemical shift markers demonstrate that this form predominantly adopts the closed conformation thereby allowing us to provide the first glimpse into the dynamics of a catalytically relevant complex. Based on 15N and 2H NMR spin relaxation, we find that the mutant complex has modest changes in ps-ns flexibility with most affected residues residing in the distal adenosine binding domain rather than the active site. Thus, aberrant ps-ns dynamics are likely not the main contributor to the decreased catalytic rate. The most dramatic effect of the mutation involves changes in µs-ms dynamics of the F-G and Met20 loops. Whereas loop motion is quenched in the wild type transition state inhibitor complex, the F-G and Met20 loops undergo excursions from the closed conformation in the mutant complex. These excursions serve to decrease the population of conformers having the correct active site configuration, thus providing an explanation for the G121V catalytic defect

    The Complete Genome Sequence of ‘Candidatus Liberibacter solanacearum’, the Bacterium Associated with Potato Zebra Chip Disease

    Get PDF
    Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of potato shoots and generally results in unusable tubers. This disease has led to multi-million dollar losses for growers in the central and western United States over the past decade and impacts the livelihood of potato farmers in Mexico and New Zealand. ZC is associated with ‘Candidatus Liberibacter solanacearum’, a fastidious alpha-proteobacterium that is transmitted by a phloem-feeding psyllid vector, Bactericera cockerelli Sulc. Research on this disease has been hampered by a lack of robust culture methods and paucity of genome sequence information for ‘Ca. L. solanacearum’. Here we present the sequence of the 1.26 Mbp metagenome of ‘Ca. L. solanacearum’, based on DNA isolated from potato psyllids. The coding inventory of the ‘Ca. L. solanacearum’ genome was analyzed and compared to related Rhizobiaceae to better understand ‘Ca. L. solanacearum’ physiology and identify potential targets to develop improved treatment strategies. This analysis revealed a number of unique transporters and pathways, all potentially contributing to ZC pathogenesis. Some of these factors may have been acquired through horizontal gene transfer. Taxonomically, ‘Ca. L. solanacearum’ is related to ‘Ca. L. asiaticus’, a suspected causative agent of citrus huanglongbing, yet many genome rearrangements and several gene gains/losses are evident when comparing these two Liberibacter. species. Relative to ‘Ca. L. asiaticus’, ‘Ca. L. solanacearum’ probably has reduced capacity for nucleic acid modification, increased amino acid and vitamin biosynthesis functionalities, and gained a high-affinity iron transport system characteristic of several pathogenic microbes

    Rationale and design: telepsychology service delivery for depressed elderly veterans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Older adults who live in rural areas experience significant disparities in health status and access to mental health care. "Telepsychology," (also referred to as "telepsychiatry," or "telemental health") represents a potential strategy towards addressing this longstanding problem. Older adults may benefit from telepsychology due to its: (1) utility to address existing problematic access to care for rural residents; (2) capacity to reduce stigma associated with traditional mental health care; and (3) utility to overcome significant age-related problems in ambulation and transportation. Moreover, preliminary evidence indicates that telepsychiatry programs are often less expensive for patients, and reduce travel time, travel costs, and time off from work. Thus, telepsychology may provide a cost-efficient solution to access-to-care problems in rural areas.</p> <p>Methods</p> <p>We describe an ongoing four-year prospective, randomized clinical trial comparing the effectiveness of an empirically supported treatment for major depressive disorder, Behavioral Activation, delivered either via in-home videoconferencing technology ("Telepsychology") or traditional face-to-face services ("Same-Room"). Our hypothesis is that in-homeTelepsychology service delivery will be equally effective as the traditional mode (Same-Room). Two-hundred twenty-four (224) male and female elderly participants will be administered protocol-driven individual Behavioral Activation therapy for depression over an 8-week period; and subjects will be followed for 12-months to ascertain longer-term effects of the treatment on three outcomes domains: (1) clinical outcomes (symptom severity, social functioning); (2) process variables (patient satisfaction, treatment credibility, attendance, adherence, dropout); and (3) economic outcomes (cost and resource use).</p> <p>Discussion</p> <p>Results from the proposed study will provide important insight into whether telepsychology service delivery is as effective as the traditional mode of service delivery, defined in terms of clinical, process, and economic outcomes, for elderly patients with depression residing in rural areas without adequate access to mental health services.</p> <p>Trial registration</p> <p>National Institutes of Health Clinical Trials Registry (ClinicalTrials.gov identifier# NCT00324701).</p

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Exact Hausdorff dimension in random recursive constructions

    No full text
    corecore