11 research outputs found

    The temperature effect on electrokinetic properties of the silica–polyvinyl alcohol (PVA) system

    Get PDF
    The influence of polyvinyl alcohol (PVA) adsorption on the structure of the diffuse layer of silica (SiO2) in the temperature range 15–35 °C was examined. The microelectrophoresis method was used in the experiments to determine the zeta potential of the solid particles in the absence and presence of the polymer. The adsorption of PVA macromolecules causes the zeta potential decrease in all investigated SiO2 systems. Moreover this, decrease is the most pronounced at the highest examined temperature. Obtained results indicate that the conformational changes of adsorbed polymer chains are responsible for changes in electrokinetic properties of silica particles. Moreover, the structure of diffuse layer on the solid surface with adsorbed polymer results from the following effects: the presence of acetate groups in PVA chains, the blockade of silica surface groups by adsorbed polymer and the shift of slipping plane due to macromolecules adsorption

    Cd2+ Toxicity to a Green Alga Chlamydomonas reinhardtii as Influenced by Its Adsorption on TiO2 Engineered Nanoparticles

    Get PDF
    In the present study, Cd2+ adsorption on polyacrylate-coated TiO2 engineered nanoparticles (TiO2-ENs) and its effect on the bioavailability as well as toxicity of Cd2+ to a green alga Chlamydomonas reinhardtii were investigated. TiO2-ENs could be well dispersed in the experimental medium and their pHpzc is approximately 2. There was a quick adsorption of Cd2+ on TiO2-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd2+ complexed with TiO2-ENs. At equilibrium, Cd2+ adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO2-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd2+ toxicity was alleviated in the presence of TiO2-ENs. Algal growth was less suppressed in treatments with comparable total Cd2+ concentration but more TiO2-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd2+ concentration. No detectable amount of TiO2-ENs was found to be associated with the algal cells. Therefore, TiO2-ENs could reduce the free Cd2+ concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii
    corecore