35 research outputs found

    Empathy, engagement, entrainment: the interaction dynamics of aesthetic experience

    Get PDF
    A recent version of the view that aesthetic experience is based in empathy as inner imitation explains aesthetic experience as the automatic simulation of actions, emotions, and bodily sensations depicted in an artwork by motor neurons in the brain. Criticizing the simulation theory for committing to an erroneous concept of empathy and failing to distinguish regular from aesthetic experiences of art, I advance an alternative, dynamic approach and claim that aesthetic experience is enacted and skillful, based in the recognition of others’ experiences as distinct from one’s own. In combining insights from mainly psychology, phenomenology, and cognitive science, the dynamic approach aims to explain the emergence of aesthetic experience in terms of the reciprocal interaction between viewer and artwork. I argue that aesthetic experience emerges by participatory sense-making and revolves around movement as a means for creating meaning. While entrainment merely plays a preparatory part in this, aesthetic engagement constitutes the phenomenological side of coupling to an artwork and provides the context for exploration, and eventually for moving, seeing, and feeling with art. I submit that aesthetic experience emerges from bodily and emotional engagement with works of art via the complementary processes of the perception–action and motion–emotion loops. The former involves the embodied visual exploration of an artwork in physical space, and progressively structures and organizes visual experience by way of perceptual feedback from body movements made in response to the artwork. The latter concerns the movement qualities and shapes of implicit and explicit bodily responses to an artwork that cue emotion and thereby modulate over-all affect and attitude. The two processes cause the viewer to bodily and emotionally move with and be moved by individual works of art, and consequently to recognize another psychological orientation than her own, which explains how art can cause feelings of insight or awe and disclose aspects of life that are unfamiliar or novel to the viewer

    Marginal Eyespots on Butterfly Wings Deflect Bird Attacks Under Low Light Intensities with UV Wavelengths

    Get PDF
    Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function.Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head.In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities

    CD4(+) T-cell responses and distribution at the colonic mucosa during Brachyspira hyodysenteriae-induced colitis in pigs

    No full text
    The spirochaete Brachyspira hyodysenteriae causes swine dysentery, a severe colitis characterized by mucosal enlargement as a result of crypt elongation and epithelial necrosis. Most efforts to understand the pathogenesis of this disease have focused on the aetiological agent and its virulence factors. However, the host immune response has been considered an important factor in disease development. Previous research has shown that B. hyodysenteriae induces systemic CD4(+) and γδ T-cell responses after intramuscular immunization. Here, we have evaluated changes in the CD4(+) and γδ T-cell composition and distribution the different compartments of the colonic mucosa of pigs challenged with B. hyodysenteriae. We report that, in infected pigs, γδ T cells were significantly depleted from the epithelial layer, although their numbers were maintained in the lamina propria. In addition, CD4(+) T cells aggregated in clusters located in the lamina propria and submucosa. Ex vivo analyses of CD4(+) T-cell responses to B. hyodysenteriae antigens correlated with the changes in the mucosal CD4(+) T-cell distribution observed in infected pigs; CD4(+) T cells recovered from peripheral blood and colonic lymph nodes of infected pigs proliferated to B. hyodysenteriae antigens, whereas no differences were found in the γδ T-cell responses between challenged and control groups. In addition, colonic lymph node CD4(+) T cells had a predominant memory/activated phenotype. These results indicate that infection with B. hyodysenteriae induces a mucosal CD4(+) T-cell response and points to CD4(+) T cells being important contributors to the immunopathogenesis of swine dysentery

    The brachyspira hyodysenteriae ftnA gene : DNA vaccination and real-time PCR quantification of bacteria in a mouse model of disease

    Full text link
    The nucleotide sequence of the Brachyspira hyodysenteriae ftnA gene, encoding a putative ferritin protein (FtnA), was determined. Analysis of the sequence predicted that this gene encoded a protein of 180 amino acids. RT-PCR and Western blot showed that the ftnA gene was expressed in B. hyodysenteriae, and evidence suggests that FtnA stores iron rather than haem. ftnA was delivered as DNA and recombinant protein vaccines in a mouse model of B. hyodysenteriae infection. Vaccine efficacy was monitored by caecal pathology and quantification of B. hyodysenteriae numbers in the caeca of infected mice by real-time PCR.<br /

    A social cognition approach to stereotyping in documentary practice

    Get PDF
    Our perceptions of the social world are guided by categorical (i.e. stereotypical) thinking based on preexisting schematic knowledge, which frames filmmaking as well as viewing practices. This chapter outlines how folk-psychological mechanisms, as manifested in films and filmmaking textbooks, potentially result in the construction and perpetuation of social stereotypes that are detrimental to certain communities such as disabled people. This knowledge is then deployed in my own film practice to reduce or reconfigure disability stereotypes, particularly using the strategy of narrative fragmentation, which prevents the formation of schematic characters and plots
    corecore