31 research outputs found

    The collective impact of rare diseases in Western Australia: an estimate using a population-based cohort.

    Get PDF
    PURPOSE: It has been argued that rare diseases should be recognized as a public health priority. However, there is a shortage of epidemiological data describing the true burden of rare diseases. This study investigated hospital service use to provide a better understanding of the collective health and economic impacts of rare diseases. METHODS: Novel methodology was developed using a carefully constructed set of diagnostic codes, a selection of rare disease cohorts from hospital administrative data, and advanced data-linkage technologies. Outcomes included health-service use and hospital admission costs. RESULTS: In 2010, cohort members who were alive represented approximately 2.0% of the Western Australian population. The cohort accounted for 4.6% of people discharged from hospital and 9.9% of hospital discharges, and it had a greater average length of stay than the general population. The total cost of hospital discharges for the cohort represented 10.5% of 2010 state inpatient hospital costs. CONCLUSIONS: This population-based cohort study provides strong new evidence of a marked disparity between the proportion of the population with rare diseases and their combined health-system costs. The methodology will inform future rare-disease studies, and the evidence will guide government strategies for managing the service needs of people living with rare diseases.Genet Med advance online publication 22 September 2016Genetics in Medicine (2016); doi:10.1038/gim.2016.143

    Therapies for rare diseases: therapeutic modalities, progress and challenges ahead.

    No full text
    Most rare diseases still lack approved treatments despite major advances in research providing the tools to understand their molecular basis, as well as legislation providing regulatory and economic incentives to catalyse the development of specific therapies. Addressing this translational gap is a multifaceted challenge, for which a key aspect is the selection of the optimal therapeutic modality for translating advances in rare disease knowledge into potential medicines, known as orphan drugs. With this in mind, we discuss here the technological basis and rare disease applicability of the main therapeutic modalities, including small molecules, monoclonal antibodies, protein replacement therapies, oligonucleotides and gene and cell therapies, as well as drug repurposing. For each modality, we consider its strengths and limitations as a platform for rare disease therapy development and describe clinical progress so far in developing drugs based on it. We also discuss selected overarching topics in the development of therapies for rare diseases, such as approval statistics, engagement of patients in the process, regulatory pathways and digital tools

    Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly

    No full text
    The assembly of 80S ribosomes requires joining of the 40S and 60S subunits, which is triggered by the formation of an initiation complex on the 40S subunit. This event is rate-limiting for translation, and depends on external stimuli and the status of the cell. Here we show that 60S subunits are activated by release of eIF6 (also termed p27BBP). In the cytoplasm, eIF6 is bound to free 60S but not to 80S. Furthermore, eIF6 interacts in the cytoplasm with RACK1, a receptor for activated protein kinase C (PKC). RACK1 is a major component of translating ribosomes, which harbour significant amounts of PKC. Loading 60S subunits with eIF6 caused a dose-dependent translational block and impairment of 80S formation, which were reversed by expression of RACK1 and stimulation of PKC in vivo and in vitro. PKC stimulation led to eIF6 phosphorylation, and mutation of a serine residue in the carboxy terminus of eIF6 impaired RACK1/PKC-mediated translational rescue. We propose that eIF6 release regulates subunit joining, and that RACK1 provides a physical and functional link between PKC signalling and ribosome activation
    corecore