29 research outputs found

    Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells

    Get PDF
    BACKGROUND: The natural plant polyphenol resveratrol present in some foods including grapes, wine, and peanuts, has been implicated in the inhibition, delay, and reversion of cellular events associated with heart diseases and tumorigenesis. Recent work has suggested that the cancer chemoprotective effect of the compound is primarily linked to its ability to induce cell division cycle arrest and apoptosis, the latter possibly through the activation of pro-apoptotic proteins such as Bax. METHODS: The expression, subcellular localization, and importance of Bax for resveratrol-provoked apoptosis were assessed in human HCT116 colon carcinoma cells and derivatives with both bax alleles inactivated. RESULTS: Low to moderate concentrations of resveratrol induced co-localization of cellular Bax protein with mitochondria, collapse of the mitochondrial membrane potential, activation of caspases 3 and 9, and finally, apoptosis. In the absence of Bax, membrane potential collapse was delayed, and apoptosis was reduced but not absent. Resveratrol inhibited the formation of colonies by both HCT116 and HCT116 bax -/- cells. CONCLUSION: Resveratrol at physiological doses can induce a Bax-mediated and a Bax-independent mitochondrial apoptosis. Both can limit the ability of the cells to form colonies

    Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous results showed that over-expression of the <it>WTH3 </it>gene in MDR cells reduced <it>MDR1 </it>gene expression and converted their resistance to sensitivity to various anticancer drugs. In addition, the <it>WTH3 </it>gene promoter was hypermethylated in the MCF7/AdrR cell line and primary drug resistant breast cancer epithelial cells. <it>WTH3 </it>was also found to be directly targeted and up regulated by the <it>p53 </it>gene. Furthermore, over expression of the <it>WTH3 </it>gene promoted the apoptotic phenotype in various host cells.</p> <p>Methods</p> <p>To further confirm <it>WTH3</it>'s drug resistant related characteristics, we recently employed the small hairpin RNA (shRNA) strategy to knockdown its expression in HEK293 cells. In addition, since the <it>WTH3 </it>promoter's p53-binding site was located in a CpG island that was targeted by methylation, we were interested in testing the possible effect this epigenetic modification had on the <it>p53 </it>transcription factor relative to <it>WTH3 </it>expression. To do so, the <it>in vitro </it>methylation method was utilized to examine the <it>p53 </it>transgene's influence on either the methylated or non-methylated <it>WTH3 </it>promoter.</p> <p>Results</p> <p>The results generated from the gene knockdown strategy showed that reduction of <it>WTH3 </it>expression increased <it>MDR1 </it>expression and elevated resistance to Doxorubicin as compared to the original control cells. Data produced from the methylation studies demonstrated that DNA methylation adversely affected the positive impact of <it>p53 </it>on <it>WTH3 </it>promoter activity.</p> <p>Conclusion</p> <p>Taken together, our studies provided further evidence that <it>WTH3 </it>played an important role in MDR development and revealed one of its transcription regulatory mechanisms, DNA methylation, which antagonized <it>p53</it>'s positive impact on <it>WTH3 </it>expression.</p

    A Monoclonal Antibody against p53 Cross-Reacts with Processing Bodies

    Get PDF
    The p53 tumor suppressor protein is an important regulator of cell proliferation and apoptosis. p53 can be found in the nucleus and in the cytosol, and the subcellular location is key to control p53 function. In this work, we found that a widely used monoclonal antibody against p53, termed Pab 1801 (Pan antibody 1801) yields a remarkable punctate signal in the cytoplasm of several cell lines of human origin. Surprisingly, these puncta were also observed in two independent p53-null cell lines. Moreover, the foci stained with the Pab 1801 were present in rat cells, although Pab 1801 recognizes an epitope that is not conserved in rodent p53. In contrast, the Pab 1801 nuclear staining corresponded to genuine p53, as it was upregulated by p53-stimulating drugs and absent in p53-null cells. We identified the Pab 1801 cytoplasmic puncta as P Bodies (PBs), which are involved in mRNA regulation. We found that, in several cell lines, including U2OS, WI38, SK-N-SH and HCT116, the Pab 1801 puncta strictly colocalize with PBs identified with specific antibodies against the PB components Hedls, Dcp1a, Xrn1 or Rck/p54. PBs are highly dynamic and accordingly, the Pab 1801 puncta vanished when PBs dissolved upon treatment with cycloheximide, a drug that causes polysome stabilization and PB disruption. In addition, the knockdown of specific PB components that affect PB integrity simultaneously caused PB dissolution and the disappearance of the Pab 1801 puncta. Our results reveal a strong cross-reactivity of the Pab 1801 with unknown PB component(s). This was observed upon distinct immunostaining protocols, thus meaning a major limitation on the use of this antibody for p53 imaging in the cytoplasm of most cell types of human or rodent origin

    Regulation of Tumor Suppressor p53 and HCT116 Cell Physiology by Histone Demethylase JMJD2D/KDM4D

    Get PDF
    JMJD2D, also known as KDM4D, is a histone demethylase that removes methyl moieties from lysine 9 on histone 3 and from lysine 26 on histone 1.4. Here, we demonstrate that JMJD2D forms a complex with the p53 tumor suppressor in vivo and interacts with the DNA binding domain of p53 in vitro. A luciferase reporter plasmid driven by the promoter of p21, a cell cycle inhibitor and prominent target gene of p53, was synergistically activated by p53 and JMJD2D, which was dependent on JMJD2D catalytic activity. Likewise, overexpression of JMJD2D induced p21 expression in U2OS osteosarcoma cells in the absence and presence of adriamycin, an agent that induces DNA damage. Furthermore, downregulation of JMJD2D inhibited cell proliferation in wild-type and even more so in p53−/− HCT116 colon cancer cells, suggesting that JMJD2D is a pro-proliferative molecule. JMJD2D depletion also induced more strongly apoptosis in p53−/− compared to wild-type HCT116 cells. Collectively, our results demonstrate that JMJD2D can stimulate cell proliferation and survival, suggesting that its inhibition may be helpful in the fight against cancer. Furthermore, our data imply that activation of p53 may represent a mechanism by which the pro-oncogenic functions of JMJD2D become dampened

    Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin

    Get PDF
    Abstract Background One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. Methods RNA interference (RNAi) was used to reduce the transcription-coupled nucleotide excision repair (TC-NER) capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B) transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. Results These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. Conclusion The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic
    corecore