146 research outputs found

    Eco-evolutionary dynamics. Experiments in a model system

    Get PDF
    Understanding the consequences of environmental change on both long- and short-term ecological and evolutionary dynamics is a basic pre-requisite for any effective conservation or management programme but inherently problematic because of the complex interplay between ecological and evolutionary processes. Components of such complexity have been described in isolation or within conceptual models on numerous occasions. What remains lacking are studies that characterise effectively the coupled ecological and evolutionary dynamics, to demonstrate feedback mechanisms that influence both phenotypic change, and its effects on population demography, in organisms with complex life histories. We present a systems-based approach that brings together multiple effects that 'shape' an organism's life history (e.g. direct and delayed life-history consequences of environmental variation) and the resulting eco-evolutionary population dynamics. Using soil mites in microcosms, we characterise ecological, phenotypic and evolutionary dynamics in replicated populations in response to experimental manipulations of environment (e.g. the competitive environment, female age, male quality). Our results demonstrate that population dynamics are complex and are affected by both plastic and evolved responses to past and present environments, and that the emergent population dynamic itself shaped the landscape for natural selection to act on in subsequent generations. Evolutionary and ecological effects on dynamics can therefore be almost impossible to partition, which needs to be considered and appreciated in research, management and conservation. © 2014 Elsevier Ltd

    Evidence for directional selection at a novel major histocompatibility class I marker in wild common frogs (Rana temporaria) exposed to a viral pathogen (Ranavirus).

    Get PDF
    (c) 2009 Teacher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower F(ST)) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year

    Characterization of the Major Histocompatibility Complex Class II Genes in Miiuy Croaker

    Get PDF
    Major histocompatibility complex (MHC) has a central role in the adaptive immune system by presenting foreign peptide to the T-cell receptor. In order to study the molecular function and genomic characteristic of class II genes in teleost, the full lengths of MHC class IIA and IIB cDNA and genomic sequence were cloned from miiuy croaker (Miichthys miiuy). As in other teleost, four exons and three introns were identified in miiuy croaker class IIA gene; but the difference is that six exons and five introns were identified in the miiuy croaker class IIB gene. The deduced amino acid sequence of class IIA and class IIB had 26.3–85.7% and 11.0–88.8% identity with those of mammal and teleost, respectively. Real-time quantitative RT-PCR demonstrated that the MHC class IIA and IIB were ubiquitously expressed in ten normal tissues; expression levels of MHC genes were found first upregulated and then downregulated, and finally by a recovery to normal level throughout the pathogenic bacteria infection process. In addition, we report on the underlying mechanism that maintains sequences diversity among many fish species. A series of site-model tests implemented in the CODEML program revealed that positive Darwinian selection is likely the cause of the molecular evolution in the fish MHC class II genes

    No behavioural response to kin competition in a lekking species

    Get PDF
    The processes of kin selection and competition may occur simultaneously if limited individual dispersal i.e. population viscosity, is the only cause of the interactions between kin. Therefore, the net indirect benefits of a specific behaviour may largely depend on the existence of mechanisms dampening the fitness costs of competing with kin. In lekking species, males may increase the mating success of their close relatives (and hence gain indirect fitness benefits) because female prefer large leks. At the same time, kin selection may also lead to the evolution of mechanisms that dampen the costs of kin competition. As this mechanism has largely been ignored to date, we used detailed behavioural and genetic data collected in the black grouse Lyrurus tetrix to test whether males mitigate the costs of kin competition through the modulation of their fighting behaviours according to kinship and the avoidance of close relatives when establishing a lek territory. We found that neighbouring males’ fighting behaviour was unrelated to kinship and males did not avoid settling down with close relatives on leks. As males’ current and future mating success are strongly related to their behaviour on the lek (including fighting behaviour and territory position), the costs of kin competition may be negligible relative to the direct benefits of successful male-male contests. As we previously showed that the indirect fitness benefits of group membership were very limited in this black grouse population, these behavioural data support the idea that direct fitness benefits gained by successful male-male encounters likely outbalance any indirect fitness benefits

    New Insights into the Role of MHC Diversity in Devil Facial Tumour Disease

    Get PDF
    Devil facial tumour disease (DFTD) is a fatal contagious cancer that has decimated Tasmanian devil populations. The tumour has spread without invoking immune responses, possibly due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. Animals from a region in north-western Tasmania have lower infection rates than those in the east of the state. This area is a genetic transition zone between sub-populations, with individuals from north-western Tasmania displaying greater diversity than eastern devils at MHC genes, primarily through MHC class I gene copy number variation. Here we test the hypothesis that animals that remain healthy and tumour free show predictable differences at MHC loci compared to animals that develop the disease

    Evolutionary genetics of MHC class II beta genes in the brown hare, Lepus europaeus

    Get PDF
    The genes of the major histocompatibility complex (MHC) are attractive candidates for investigating the link between adaptive variation and individual fitness. High levels of diversity at the MHC are thought to be the result of parasite-mediated selection and there is growing evidence to support this theory. Most studies, however, target just a single gene within the MHC and infer any evidence of selection to be representative of the entire gene region. Here we present data from three MHC class II beta genes (DPB, DQB, and DRB) for brown hares in two geographic regions and compare them against previous results from a class II alpha-chain gene (DQA). We report moderate levels of diversity and high levels of population differentiation in the DQB and DRB genes (Na = 11, Dest = 0.071 and Na = 15, Dest = 0.409, respectively), but not for the DPB gene (Na = 4, Dest = 0.00). We also detected evidence of positive selection within the peptide binding region of the DQB and DRB genes (95% CI, ω > 1.0) but found no signature of selection for DPB. Mutation and recombination were both found to be important processes shaping the evolution of the class II genes. Our findings suggest that while diversifying selection is a significant contributor to the generally high levels of MHC diversity, it does not act in a uniform manner across the entire MHC class II region. The beta-chain genes that we have characterized provide a valuable set of MHC class II markers for future studies of the evolution of adaptive variation in Leporids

    Differential immunity as a factor influencing mussel hybrid zone structure

    Get PDF
    Interspecific hybridisation can alter fitness-related traits, including the response to pathogens, yet immunity is rarely investigated as a potential driver of hybrid zone dynamics, particularly in invertebrates. We investigated the immune response of mussels from a sympatric population at Croyde Bay, within the hybrid zone of Mytilus edulis and Mytilus galloprovincialis in Southwest England. The site is characterised by size-dependent variation in genotype frequencies, with a higher frequency of M. galloprovincialis alleles in large mussels, largely attributed to selective mortality in favour of the M. galloprovincialis genotype. To determine if differences in immune response may contribute to this size-dependent variation in genotype frequencies, we assessed the two pure species and their hybrids in their phagocytic abilities when subject to immune challenge as a measure of immunocompetence and measured the metabolic cost of mounting an antigen-stimulated immune response. Mussels identified as M. galloprovincialis had a greater immunocompetence response at a lower metabolic cost compared to mussels identified as M. edulis. Mussels identified as hybrids had intermediate values for both parameters, providing no evidence for heterosis but suggesting that increased susceptibility compared to M. galloprovincialis may be attributed to the M. edulis genotype. The results indicate phenotypic differences in the face of pathogenic infection, which may be a contributing factor to the differential mortality in favour of M. galloprovincialis, and the size-dependent variation in genotype frequencies associated with this contact zone. We propose that immunity may contribute to European mussel hybrid zone dynamics

    Characterization of Major Histocompatibility Complex (MHC) DRB Exon 2 and DRA Exon 3 Fragments in a Primary Terrestrial Rabies Vector (Procyon lotor)

    Get PDF
    The major histocompatibility complex (MHC) presents a unique system to explore links between genetic diversity and pathogens, as diversity within MHC is maintained in part by pathogen driven selection. While the majority of wildlife MHC studies have investigated species that are of conservation concern, here we characterize MHC variation in a common and broadly distributed species, the North American raccoon (Procyon lotor). Raccoons host an array of broadly distributed wildlife diseases (e.g., canine distemper, parvovirus and raccoon rabies virus) and present important human health risks as they persist in high densities and in close proximity to humans and livestock. To further explore how genetic variation influences the spread and maintenance of disease in raccoons we characterized a fragment of MHC class II DRA exon 3 (250bp) and DRB exon 2 (228 bp). MHC DRA was found to be functionally monomorphic in the 32 individuals screened; whereas DRB exon 2 revealed 66 unique alleles among the 246 individuals screened. Between two and four alleles were observed in each individual suggesting we were amplifying a duplicated DRB locus. Nucleotide differences between DRB alleles ranged from 1 to 36 bp (0.4–15.8% divergence) and translated into 1 to 21 (1.3–27.6% divergence) amino acid differences. We detected a significant excess of nonsynonymous substitutions at the peptide binding region (P = 0.005), indicating that DRB exon 2 in raccoons has been influenced by positive selection. These data will form the basis of continued analyses into the spatial and temporal relationship of the raccoon rabies virus and the immunogenetic response in its primary host
    • …
    corecore