1,003 research outputs found
NeuSub: A Neural Submodular Approach for Citation Recommendation
Citation recommendation is a task that aims to automatically select suitable references for a working manuscript. This task has become increasingly urgent as the typical pools of candidates continue to grow, in the order of tens or hundreds of thousands or more. While several approaches to citation recommendation have been proposed in the literature, they generally seem to lack principled mechanisms to ensure diversity and other global properties among the recommended citations. For this reason, in this paper we propose a novel citation recommendation approach that leverages a submodular scoring function and a deep document representation to achieve an effective trade-off between relevance to the query and diversity of the references. To optimally train the scoring function and the deep representation, we propose a novel training objective based on a structural/multiclass hinge loss and incremental recommendations. The experimental results over three popular citation datasets have showed that the proposed approach has led to remarkable accuracy improvements, with an increase of up to 1.91 pp of MRR and 3.29 pp of F1@100 score with respect to a state-of-the-art citation recommendation system
Learning Neural Textual Representations for Citation Recommendation
With the rapid growth of the scientific literature, manually selecting
appropriate citations for a paper is becoming increasingly challenging and
time-consuming. While several approaches for automated citation recommendation
have been proposed in the recent years, effective document representations for
citation recommendation are still elusive to a large extent. For this reason,
in this paper we propose a novel approach to citation recommendation which
leverages a deep sequential representation of the documents (Sentence-BERT)
cascaded with Siamese and triplet networks in a submodular scoring function. To
the best of our knowledge, this is the first approach to combine deep
representations and submodular selection for a task of citation recommendation.
Experiments have been carried out using a popular benchmark dataset - the ACL
Anthology Network corpus - and evaluated against baselines and a
state-of-the-art approach using metrics such as the MRR and F1-at-k score. The
results show that the proposed approach has been able to outperform all the
compared approaches in every measured metric
The Socio-economic Impacts of Social Media Privacy and Security Challenges
© 2020, Springer Nature Singapore Pte Ltd. Privacy and Security are two major challenges faced by users on social media today. These challenges are experienced in diverse ways and forms by different types of users across the web. While technological solutions are usually implemented to address them, the effects have proven to be limited so far. Despite continuous deployment of technological solutions, the need to evaluate socio-economic impacts of these challenges have also become more imperative. Hence, this paper provides a critical review and analysis of socio-economic impacts of these social media challenges. The research findings reveal significant levels of negative socio-economic impacts and provides an evaluation framework towards defining the scope, thereby identifying appropriate measures for both addressing the challenges and curbing the socio-economic impacts. The findings also demonstrate the need for solutions beyond the use of technology, to employing and deploying solutions from social sciences which deals with behavioral issues and how to address them
In-Depth Analysis of the Antibody Response of Individuals Exposed to Primary Dengue Virus Infection
Humans who experience a primary dengue virus (DENV) infection develop antibodies that preferentially neutralize the homologous serotype responsible for infection. Affected individuals also generate cross-reactive antibodies against heterologous DENV serotypes, which are non-neutralizing. Dengue cross-reactive, non-neutralizing antibodies can enhance infection of Fc receptor bearing cells and, potentially, exacerbate disease. The actual binding sites of human antibody on the DENV particle are not well defined. We characterized the specificity and neutralization potency of polyclonal serum antibodies and memory B-cell derived monoclonal antibodies (hMAbs) from 2 individuals exposed to primary DENV infections. Most DENV-specific hMAbs were serotype cross-reactive and weakly neutralizing. Moreover, many hMAbs bound to the viral pre-membrane protein and other sites on the virus that were not preserved when the viral envelope protein was produced as a soluble, recombinant antigen (rE protein). Nonetheless, by modifying the screening procedure to detect rare antibodies that bound to rE, we were able to isolate and map human antibodies that strongly neutralized the homologous serotype of DENV. Our MAbs results indicate that, in these two individuals exposed to primary DENV infections, a small fraction of the total antibody response was responsible for virus neutralization
Replication in Cells of Hematopoietic Origin Is Necessary for Dengue Virus Dissemination
Dengue virus (DENV) is a mosquito-borne pathogen for which no vaccine or specific therapeutic is available. Although it is well established that dendritic cells and macrophages are primary sites of DENV replication, it remains unclear whether non-hematopoietic cellular compartments serve as virus reservoirs. Here, we exploited hematopoietic-specific microRNA-142 (miR-142) to control virus tropism by inserting tandem target sites into the virus to restrict replication exclusively in this cell population. In vivo use of this virus restricted infection of CD11b+, CD11c+, and CD45+ cells, resulting in a loss of virus spread, regardless of the route of administration. Furthermore, sequencing of the targeted virus population that persisted at low levels, demonstrated total excision of the inserted miR-142 target sites. The complete conversion of the virus population under these selective conditions suggests that these immune cells are the predominant sources of virus amplification. Taken together, this work highlights the importance of hematopoietic cells for DENV replication and showcases an invaluable tool for the study of virus pathogenesis
Age-Dependent Ocular Dominance Plasticity in Adult Mice
Background: Short monocular deprivation (4 days) induces a shift in the ocular dominance of binocular neurons in the juvenile mouse visual cortex but is ineffective in adults. Recently, it has been shown that an ocular dominance shift can still be elicited in young adults (around 90 days of age) by longer periods of deprivation (7 days). Whether the same is true also for fully mature animals is not yet known. Methodology/Principal Findings: We therefore studied the effects of different periods of monocular deprivation (4, 7, 14 days) on ocular dominance in C57Bl/6 mice of different ages (25 days, 90–100 days, 109–158 days, 208–230 days) using optical imaging of intrinsic signals. In addition, we used a virtual optomotor system to monitor visual acuity of the open eye in the same animals during deprivation. We observed that ocular dominance plasticity after 7 days of monocular deprivation was pronounced in young adult mice (90–100 days) but significantly weaker already in the next age group (109–158 days). In animals older than 208 days, ocular dominance plasticity was absent even after 14 days of monocular deprivation. Visual acuity of the open eye increased in all age groups, but this interocular plasticity also declined with age, although to a much lesser degree than the optically detected ocular dominance shift. Conclusions/Significance: These data indicate that there is an age-dependence of both ocular dominance plasticity and the enhancement of vision after monocular deprivation in mice: ocular dominance plasticity in binocular visual cortex is mos
VapC Toxins from Mycobacterium tuberculosis Are Ribonucleases that Differentially Inhibit Growth and Are Neutralized by Cognate VapB Antitoxins
The chromosome of Mycobacterium tuberculosis (Mtb) encodes forty seven toxin-antitoxin modules belonging to the VapBC family. The role of these modules in the physiology of Mtb and the function(s) served by their expansion are unknown. We investigated ten vapBC modules from Mtb and the single vapBC from M. smegmatis. Of the Mtb vapCs assessed, only Rv0549c, Rv0595c, Rv2549c and Rv2829c were toxic when expressed from a tetracycline-regulated promoter in M. smegmatis. The same genes displayed toxicity when conditionally expressed in Mtb. Toxicity of Rv2549c in M. smegmatis correlated with the level of protein expressed, suggesting that the VapC level must exceed a threshold for toxicity to be observed. In addition, the level of Rv2456 protein induced in M. smegmatis was markedly lower than Rv2549c, which may account for the lack of toxicity of this and other VapCs scored as ‘non-toxic’. The growth inhibitory effects of toxic VapCs were neutralized by expression of the cognate VapB as part of a vapBC operon or from a different chromosomal locus, while that of non-cognate antitoxins did not. These results demonstrated a specificity of interaction between VapCs and their cognate VapBs, a finding corroborated by yeast two-hybrid analyses. Deletion of selected vapC or vapBC genes did not affect mycobacterial growth in vitro, but rendered the organisms more susceptible to growth inhibition following toxic VapC expression. However, toxicity of ‘non-toxic’ VapCs was not unveiled in deletion mutant strains, even when the mutation eliminated the corresponding cognate VapB, presumably due to insufficient levels of VapC protein. Together with the ribonuclease (RNase) activity demonstrated for Rv0065 and Rv0617 – VapC proteins with similarity to Rv0549c and Rv3320c, respectively – these results suggest that the VapBC family potentially provides an abundant source of RNase activity in Mtb, which may profoundly impact the physiology of the organism
Protective and Enhancing HLA Alleles, HLA-DRB1*0901 and HLA-A*24, for Severe Forms of Dengue Virus Infection, Dengue Hemorrhagic Fever and Dengue Shock Syndrome
Dengue has become one of the most common viral diseases transmitted by infected mosquitoes (with any of the four dengue virus serotypes: DEN-1, -2, -3, or -4). It may present as asymptomatic or illness, ranging from mild to severe disease. Recently, the severe forms, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), have become the leading cause of death among children in Southern Vietnam. The pathogenesis of DHF/DSS, however, is not yet completely understood. The immune response, virus virulence, and host genetic background are considered to be risk factors contributing to disease severity. Human leucocyte antigens (HLA) expressed on the cell surface function as antigen presenting molecules and those polymorphism can change individuals' immune response. We investigated the HLA-A, -B (class I), and -DRB1 (class II) polymorphism in Vietnamese children with different severity (DHF/DSS) by a hospital-based case-control study. The study showed persons carrying HLA-A*2402/03/10 are about 2 times more likely to have severe dengue infection than others. On the other hand, HLA-DRB1*0901 persons are less likely to develop DSS with DEN-2 virus infection. These results clearly demonstrated that HLA controlled the susceptibility to severe forms of DV infection
- …