17 research outputs found

    18-month occurrence of severe events among early diagnosed HIV-infected children before antiretroviral therapy in Abidjan, Côte d'Ivoire: A cohort study

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To assess the 18-month field effectiveness on severe events of a pediatric package combining early HIV-diagnosis and targeted cotrimoxazole prophylaxis in HIV-infected children from age six-week before the antiretroviral era, in Abidjan, Côte d'Ivoire.</p> <p>Methods</p> <p>Data from two consecutive prevention of HIV mother-to-child transmission programs were compared: the ANRS 1201/1202 Ditrame-Plus cohort (2001–2005) and the pooled data of the ANRS 049a Ditrame randomized trial and its following open-labeled cohort (1995–2000), used as a reference group. HIV-infected pregnant women ≥ 32–36 weeks of gestation were offered a short-course peri-partum antiretroviral prophylaxis (ZDV in Ditrame, and ZDV ± 3TC+single-dose (sd) NVP in Ditrame-Plus). Neonatal prophylaxis was provided in Ditrame-Plus only: 7-day ZDV and sdNVP 48–72 h after birth. A 6-week pediatric HIV-RNA diagnosis was provided on-line in the Ditrame-Plus while it was only oriented on clinical symptoms in Ditrame. Six-week HIV-infected children received a daily cotrimoxazole prophylaxis in Ditrame-Plus while no prophylaxis was provided in Ditrame. The determinants of severe events (death or hospitalization > 1 day) were assessed in a Cox regression model.</p> <p>Results</p> <p>Between 1995 and 2003, 98 out of the 1121 live-births were diagnosed as HIV-infected in peri-partum: 45 from Ditrame-Plus and 53 from Ditrame. The 18-month Kaplan-Meier cumulative probability of presenting a severe event was 66% in Ditrame-Plus (95% confidence interval [95%CI]: 50%–81%) and 77% in Ditrame (95%CI: 65%–89%), Log Rank test: p = 0.47. After adjustment on maternal WHO clinical stage, maternal death, 6-week pediatric viral load, birth-weight, and breastfeeding exposure, the 18-month risk of severe event was lower in Ditrame-Plus than in Ditrame (adjusted Hazard Ratio (aHR): 0.55, 95%CI: 0.3–1.1), although the difference was not statistically significant; p = 0.07). Maternal death was the only variable determinant of the occurrence of severe events in children (aHR: 3.73; CI: 2.2–11.2; p = 0.01).</p> <p>Conclusion</p> <p>Early cotrimoxazole from 6 weeks of age in HIV-infected infants seemed to reduce probability of severe events but the study lacked statistical power to prove this. Even with systematic cotrimoxazole prophylaxis, infant morbidity and mortality remained high pointing towards a need for early pediatric HIV-diagnosis and antiretroviral treatment in Africa.</p

    Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23

    No full text
    Aims  Our objective was to better understand the genetic bases of dilated cardiomyopathy (DCM), a leading cause of systolic heart failure. Methods and results  We conducted the largest genome-wide association study performed so far in DCM, with 2719 cases and 4440 controls in the discovery population. We identified and replicated two new DCM-associated loci on chromosome 3p25.1 [lead single-nucleotide polymorphism (SNP) rs62232870, P = 8.7 × 10−11 and 7.7 × 10−4 in the discovery and replication steps, respectively] and chromosome 22q11.23 (lead SNP rs7284877, P = 3.3 × 10−8 and 1.4 × 10−3 in the discovery and replication steps, respectively), while confirming two previously identified DCM loci on chromosomes 10 and 1, BAG3 and HSPB7. A genetic risk score constructed from the number of risk alleles at these four DCM loci revealed a 3-fold increased risk of DCM for individuals with 8 risk alleles compared to individuals with 5 risk alleles (median of the referral population). In silico annotation and functional 4C-sequencing analyses on iPSC-derived cardiomyocytes identify SLC6A6 as the most likely DCM gene at the 3p25.1 locus. This gene encodes a taurine transporter whose involvement in myocardial dysfunction and DCM is supported by numerous observations in humans and animals. At the 22q11.23 locus, in silico and data mining annotations, and to a lesser extent functional analysis, strongly suggest SMARCB1 as the candidate culprit gene. Conclusion  This study provides a better understanding of the genetic architecture of DCM and sheds light on novel biological pathways underlying heart failure

    Genetic Regulation of the Variation in Pubertal Timing

    No full text
    corecore